An overview of effect of process parameters on hydrothermal carbonization of biomass
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017 Elsevier LtdThe preceding decades witnessed hydrothermal processes being actively utilized all over the world, specifically in the developed zones. Their optimum usage is primarily sought for in terms of conversion of biomass into valuable solid, liquid and gaseous fuels. Indeed, Hydrothermal carbonization (HTC) is an effective and environment friendly technique; it possesses extensive potential towards producing high-energy density solid fuels. However, the production and quality of solid fuels from HTC depends upon several parameters; temperature, feed type, residence time, pressure and catalyst being the eminent ones. This study investigates the influence of operating parameters on solid fuel production during HTC. The biomass quality has also been analyzed in HTC by extending existing literature work through experiments that have been performed. Data including chemical composition, heating value, proximate analysis and ultimate analysis for different types of biomass was consequently collected and analyzed. It was found that reaction temperature, residence time and type of feed material are the primary factors that influence the HTC process. At higher temperatures, lower solid product is obtained; the carbon content increases, whilst the hydrogen and oxygen content decrease. Further, it has been found that higher lignin content in biomass leads to an increased solid fuel production.
Related items
Showing items related by title, author, creator and subject.
-
Abdullah, Hanisom binti (2010)Mallee biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon ...
-
Gao, Xiangpeng (2011)Coal is an important part of Australia's energy mix and is expected to continue to play an essential role in supplying cheap and secure energy for powering the Australian economy in the foreseeable future. However, ...
-
Sharma, Abhishek; Pareek, Vishnu; Zhang, D. (2015)© 2015 Elsevier Ltd. All rights reserved. Biomass as a form of energy source may be utilized in two different ways: directly by burning the biomass and indirectly by converting it into solid, liquid or gaseous fuels. ...