Show simple item record

dc.contributor.authorWozniak, M.
dc.contributor.authorPaszynski, M.
dc.contributor.authorPardo, D.
dc.contributor.authorDalcin, L.
dc.contributor.authorCalo, Victor
dc.date.accessioned2017-03-24T11:53:56Z
dc.date.available2017-03-24T11:53:56Z
dc.date.created2017-03-23T06:59:54Z
dc.date.issued2015
dc.identifier.citationWozniak, M. and Paszynski, M. and Pardo, D. and Dalcin, L. and Calo, V. 2015. Computational cost of isogeometric multi-frontal solvers on parallel distributed memory machines. Computer Methods in Applied Mechanics and Engineering. 284: pp. 971-987.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/51579
dc.identifier.doi10.1016/j.cma.2014.11.020
dc.description.abstract

This paper derives theoretical estimates of the computational cost for isogeometric multi-frontal direct solver executed on parallel distributed memory machines. We show theoretically that for the Cp-1 global continuity of the isogeometric solution, both the computational cost and the communication cost of a direct solver are of order O(log(N)p2) for the one dimensional (1D) case, O(Np2) for the two dimensional (2D) case, and O(N4/3p2) for the three dimensional (3D) case, where N is the number of degrees of freedom and p is the polynomial order of the B-spline basis functions. The theoretical estimates are verified by numerical experiments performed with three parallel multi-frontal direct solvers: MUMPS, PaStiX and SuperLU, available through PETIGA toolkit built on top of PETSc. Numerical results confirm these theoretical estimates both in terms of p and N. For a given problem size, the strong efficiency rapidly decreases as the number of processors increases, becoming about 20% for 256 processors for a 3D example with 1283 unknowns and linear B-splines with C0 global continuity, and 15% for a 3D example with 643 unknowns and quartic B-splines with C3 global continuity. At the same time, one cannot arbitrarily increase the problem size, since the memory required by higher order continuity spaces is large, quickly consuming all the available memory resources even in the parallel distributed memory version. Numerical results also suggest that the use of distributed parallel machines is highly beneficial when solving higher order continuity spaces, although the number of processors that one can efficiently employ is somehow limited.

dc.titleComputational cost of isogeometric multi-frontal solvers on parallel distributed memory machines
dc.typeJournal Article
dcterms.source.volume284
dcterms.source.startPage971
dcterms.source.endPage987
dcterms.source.issn0045-7825
dcterms.source.titleComputer Methods in Applied Mechanics and Engineering
curtin.departmentDepartment of Applied Geology
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record