Full waveform acoustic data as an aid in reducing uncertainty of mud window design in the absence of leak-off test
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Creating a mechanical earth model (MEM) during planning the well and real-time revision has proven to be extremely valuable to reach the total depth of well safely with least instability problems. One of the major components of MEM is determining horizontal stresses with reasonable accuracy. Leak-off and minifrac tests are commonly used for calibrating horizontal stresses. However, these tests are not performed in many oil and gas wellbores since the execution of such tests is expensive, time-consuming and may adversely impact the integrity of the wellbore. In this study, we presented a methodology to accurately estimate the magnitudes and directions of horizontal stresses without using any leak-off test data. In this methodology, full waveform acoustic data is acquired after drilling and utilized in order to calibrate maximum horizontal stress. The presented methodology was applied to develop an MEM in a wellbore with no leak-off test data. Processing of full waveform acoustic data resulted in three far-field shear moduli. Then based on the acoustoelastic effect maximum horizontal stress was calibrated. Moreover, maximum horizontal stress direction was detected using this methodology through the whole wellbore path. The application of this methodology resulted in constraining the MEM and increasing the accuracy of the calculated horizontal stresses, accordingly a more reliable safe mud weight window was predicted. This demonstrates that the presented methodology is a reliable approach to analyze wellbore stability in the absence of leak-off test.
Related items
Showing items related by title, author, creator and subject.
-
Gholami, Raoof; Rasouli, V.; Aadnoy, B.; Mohammadi, R. (2015)© 2015 Sinopec Geophysical Research Institute. Estimation of in situ stresses is a key step in many petroleum engineering applications, ranging from wellbore stability to sanding analysis and hydraulic fracturing design. ...
-
Archer, S.; Rasouli, Vamegh (2012)In drilling operation the design of a proper mud weight to avoid any instability’s is important. A low mud weight may cause breakouts around the borehole whereas a high mud weight can fracture the formation. Mud weight ...
-
Minaeian, V.; Rasouli, Vamegh (2011)Drilling operation in order to produce from Coalbed methane (CBM) is prone to various geomechanics related problems not only within the coal seam but also across the overburden layers. Wellbore instability in the form of ...