Solutions for a boundary value problem at resonance on [0, 8)
dc.contributor.author | Li, J. | |
dc.contributor.author | Liu, B. | |
dc.contributor.author | Liu, Lishan | |
dc.date.accessioned | 2017-04-28T13:56:57Z | |
dc.date.available | 2017-04-28T13:56:57Z | |
dc.date.created | 2017-04-28T09:06:14Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Li, J. and Liu, B. and Liu, L. 2013. Solutions for a boundary value problem at resonance on [0, 8). Mathematical and Computer Modelling. 58 (11-12): pp. 1769-1776. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/51942 | |
dc.identifier.doi | 10.1016/j.mcm.2013.06.003 | |
dc.description.abstract |
An m-point boundary value problem with one-dimensional p-Laplacian at resonance on [0, 8) is considered. By establishing a continuation theorem and applying a suitable homotopy, Leray-Schauder degree, a priori estimate, the existence of solutions to the above problem is obtained. © 2013 Elsevier Ltd. | |
dc.publisher | Pergamon | |
dc.title | Solutions for a boundary value problem at resonance on [0, 8) | |
dc.type | Journal Article | |
dcterms.source.volume | 58 | |
dcterms.source.number | 11-12 | |
dcterms.source.startPage | 1769 | |
dcterms.source.endPage | 1776 | |
dcterms.source.issn | 0895-7177 | |
dcterms.source.title | Mathematical and Computer Modelling | |
curtin.department | Department of Mathematics and Statistics | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |