Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells

    251255.pdf (1.057Mb)
    Access Status
    Open access
    Authors
    Ai, Na
    Chen, Kongfa
    Jiang, San Ping
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ai, N. and Chen, K. and Jiang, S.P. 2017. A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3−δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells. International Journal of Hydrogen Energy. 42 (10): pp. 7246-7251.
    Source Title
    International Journal of Hydrogen Energy
    DOI
    10.1016/j.ijhydene.2016.10.036
    ISSN
    0360-3199
    School
    Fuels and Energy Technology Institute
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150102025
    http://purl.org/au-research/grants/arc/DP150102044
    URI
    http://hdl.handle.net/20.500.11937/51947
    Collection
    • Curtin Research Publications
    Abstract

    A La0.8Sr0.2MnO3 (LSM)/La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) core–shell structured composite cathode of solid oxide fuel cells (SOFCs) has been fabricated by wet infiltration followed by a rapid sintering (RS) process. The RS is carried out by placing LSCF infiltrated LSM electrodes directly into a preheated furnace at 800 °C for 10 min and cooling down very quickly. The heating and cooling step takes about 20 s, substantially shorter than 10 h in the case of conventional sintering (CS) process. The results indicate the formation of a continuous and almost non-porous LSCF thin film on the LSM scaffold, forming a LSCF/LSM core–shell structure. Such RS-formed infiltrated LSCF–LSM cathodes show an electrode polarization resistance of 2.1 Ω cm2 at 700 °C, substantially smaller than 88.2 Ω cm2 of pristine LSM electrode. The core–shell structured LSCF–LSM electrodes also show good operating stability at 700 °C and 600 °C over 24–40 h.

    Related items

    Showing items related by title, author, creator and subject.

    • In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs
      Zhang, Z.; Wang, J.; Chen, Y.; Tan, S.; Shao, Zongping; Chen, D. (2018)
      BaZr x Ce y Y 1-x-y O 3-δ are recognized proton-conducting electrolyte materials for proton-conducting solid oxide fuel cells (H + -SOFCs) below 650 °C. Here Co cations are incorporated into the BaZr 0.4 Ce 0.4 Y 0.2 O ...
    • Anisotropic mechanical properties of Si anodes in a lithiation process of lithium-ion batteries
      Wang, D.; Wang, Y.; Zou, Y.; Lu, Chunsheng; Ma, Zengsheng (2018)
      © 2018 Springer-Verlag GmbH Austria, part of Springer Nature High-capacity active electrodes, such as Si anodes in Li-ion batteries, undergo a significant volume deformation of up to (Formula presented.) 400% during ...
    • 3D core–shell architecture from infiltration and beneficial reactive sintering as highly efficient and thermally stable oxygen reduction electrode
      Chen, D.; Yang, G.; Ciucci, F.; Tade, Moses; Shao, Zongping (2014)
      Solid oxide fuel cells (SOFCs) as alternatives for energy conversion have the capacity to overcome low energy conversion efficiency, highly detrimental emissions from traditional fuel utilization and the limited reserves ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.