Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet: Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics

    Access Status
    Fulltext not available
    Authors
    Li, J.
    Qin, K.
    Li, G.
    Xiao, B.
    Zhao, J.
    Cao, Mingjian
    Chen, L.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, J. and Qin, K. and Li, G. and Xiao, B. and Zhao, J. and Cao, M. and Chen, L. 2013. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet: Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics. Lithos. 160-161 (1): pp. 216-227.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2012.12.015
    ISSN
    0024-4937
    School
    John de Laeter Centre
    URI
    http://hdl.handle.net/20.500.11937/51966
    Collection
    • Curtin Research Publications
    Abstract

    The Duolong porphyry Cu-Au deposit (5.4Mt at 0.72% Cu, 41t at 0.23g/t Au), which is related to the granodiorite porphyry and the quartz-diorite porphyry from the Bangongco copper belt in central Tibet, formed in a continental arc setting. Here, we present the zircon U-Pb ages, geochemical whole-rock, Sr-Nd whole-rock and zircon in-situ Hf-O isotopic data for the Duolong porphyries. Secondary ion mass spectrometry (SIMS) zircon U-Pb analyses for six samples yielded consistent ages of ~118Ma, indicating a Cretaceous formation age. The Duolong porphyries (SiO2 of 58.81-68.81wt.%, K2O of 2.90-5.17wt.%) belong to the high-K calc-alkaline series. They show light rare earth element (LREE)-enriched distribution patterns with (La/Yb)N=6.1-11.7, enrichment in large ion lithophile elements (e.g., Cs, Rb, and Ba) and depletion of high field strength elements (e.g., Nb), with negative Ti anomalies. All zircons from the Duolong porphyries share relatively similar Hf-O isotopic compositions (d18O=5.88-7.27-; eHf(t)=3.6-7.3), indicating that they crystallized from a series of cogenetic melts with various degrees of fractional crystallization. This, along with the general absence of older inherited zircons, rules out significant crustal contamination during zircon growth. The zircons are mostly enriched in d18O relative to mantle values, indicating the involvement of an 18O-enriched crustal source in the generation of the Duolong porphyries. Together with the presence of syn-mineralization basaltic andesite, the mixing between silicic melts derived from the lower crust and evolved H2O-rich mafic melts derived from the metasomatized mantle wedge, followed by subsequent fractional crystallization (FC) and minor crustal contamination in the shallow crust, could well explain the petrogenesis of the Duolong porphyries. Significantly, the hybrid melts possibly inherited the arc magma characteristics of abundant F, Cl, Cu, and Au elements and high oxidation state, which contributed to the formation of the Duolong porphyry Cu-Au deposit. © 2013 Elsevier B.V..

    Related items

    Showing items related by title, author, creator and subject.

    • Petrogenesis and tectonic setting of Early Cretaceous granodioritic porphyry from the giant Rongna porphyry Cu deposit, central Tibet
      Zhang, X.; Li, G.; Qin, K.; Lehmann, B.; Li, J.; Zhao, J.; Cao, Mingjian; Zou, X. (2018)
      © 2018 The Rongna Cu-(Au) deposit is a recently discovered giant low-grade composite porphyry-high sulfidation epithermal system in the Duolong ore district of central Tibet. We present zircon U-Pb ages, bulk-rock geochemical ...
    • The Nadun Cu-Au mineralization, central Tibet: Root of a high sulfidation epithermal deposit
      Li, J.; Qin, K.; Li, G.; Evans, Noreen; Zhao, J.; Cao, M.; Huang, F. (2016)
      A new high sulfidation epithermal Cu–Au occurrence (Nadun) has been discovered adjacent to the Cretaceous Duolong porphyry Cu–Au deposit within the Bangong–Nujiang metallogenic belt, central Tibet. The Nadun Cu–Au ...
    • Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu–Dabate area, northwestern Tianshan (west China): Evidence for a tectonic transition from arc to post-collisional setting
      Tang, G.; Wang, Q.; Wyman, D.; Sun, M.; Li, Zheng-Xiang; Zhao, Z.; Sun, W.; Jia, X.; Jiang, Z. (2010)
      Voluminous Late Paleozoic igneous rocks and associated Cu–Au–Mo deposits occur in the northwestern Tianshan district, Xinjiang, west China. However, the tectonic setting and petrogenesis of these rocks remain controversial. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.