Proposing two defuzzification methods based on output fuzzy set weights
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Defuzzification converts the final fuzzy output set of fuzzy controller and fuzzy inference systems to a significant crisp value. However, there are various mathematical methods for defuzzification, but there is not any certain systematic method for choosing the best strategy. In this paper, first we explain the structure of a fuzzy inference system and then after a short review of defuzzification criteria and properties, the main classification groups of most widely used defuzzification methods are presented. In the following after discussing some existing techniques, two new defuzzification methods are proposed by presenting their general performance and computational formulas. However, the principle of these two methods is using weights associated with output fuzzy set like WFM or QM, but unlike the existing approaches, they consider the final aggregated consequent and implicated functions simultaneously to calculate the weights. To show how the proposed methods act, two numerical examples are solved using the presented methods and the results are compared with some of common defuzzification techniques.
Related items
Showing items related by title, author, creator and subject.
-
Remias, Michael George (2012)In modelling and optimizing real world systems and processes, one usually ends up with a linear or nonlinear programming problem, namely maximizing one or more objective functions subject to a set of constraint equations ...
-
Chan, Kit Yan; Engelke, U. (2017)Design of preferred products requires affective quality information which relates to human emotional satisfaction. However, it is expensive and time consuming to conduct a full survey to investigate affective qualities ...
-
Chan, Kit Yan; Kwong, C.; Tsim, Y. (2010)Fuzzy regression has demonstrated its ability to model manufacturing processes in which the processes have fuzziness and the number of experimental data sets for modelling them is limited. However, previous studies only ...