Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Predicting crystal growth via a unified kinetic three-dimensional partition model

    251157.pdf (446.9Kb)
    Access Status
    Open access
    Authors
    Anderson, M.
    Gebbie-Rayet, J.
    Hill, A.
    Farida, N.
    Attfield, M.
    Cubillas, P.
    Blatov, V.
    Proserpio, D.
    Akporiaye, D.
    Arstad, B.
    Gale, Julian
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Anderson, M. and Gebbie-Rayet, J. and Hill, A. and Farida, N. and Attfield, M. and Cubillas, P. and Blatov, V. et al. 2017. Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature. 544: pp. 456–459.
    Source Title
    Nature
    DOI
    10.1038/nature21684
    ISSN
    1476-4687
    School
    Department of Chemistry
    URI
    http://hdl.handle.net/20.500.11937/52133
    Collection
    • Curtin Research Publications
    Abstract

    Understanding and predicting crystal growth is fundamental to the control of functionality in modern materials. Despite investigations for more than one hundred years, it is only recently that the molecular intricacies of these processes have been revealed by scanning probe microscopy. To organize and understand this large amount of new information, new rules for crystal growth need to be developed and tested. However, because of the complexity and variety of different crystal systems, attempts to understand crystal growth in detail have so far relied on developing models that are usually applicable to only one system. Such models cannot be used to achieve the wide scope of understanding that is required to create a unified model across crystal types and crystal structures. Here we describe a general approach to understanding and, in theory, predicting the growth of a wide range of crystal types, including the incorporation of defect structures, by simultaneous molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-dimensional partition model. This entails dividing the structure into 'natural tiles' or Voronoi polyhedra that are metastable and, consequently, temporally persistent. As such, these units are then suitable for re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting the crystal growth of a diverse set of crystal types, including zeolites, metal-organic frameworks, calcite, urea and l-cystine.

    Related items

    Showing items related by title, author, creator and subject.

    • Mechanims of lactose crystallisation
      Dincer, Tuna (2000)
      Lactose is the major carbohydrate in milk. The presence of lactose in whey constitutes a significant pollution problem for dairy factories. At the same time, there is an increasing market for high quality crystalline ...
    • Solubility and crystal growth of sodium nitrate from mixed alcohol – water solvents
      Rossiter, Angelina Jane (2009)
      Due to the ductile nature of the sodium nitrate crystal which deforms plastically under high levels of strain, most of the crystal growth studies in aqueous solution have focussed on the influence of tensile strain, ...
    • Simulating micrometre-scale crystal growth from solution
      Piana, Stefano; Reyhani, Manijeh; Gale, Julian (2005)
      Understanding crystal growth is essential for controlling the crystallization used in industrial separation and purification processes. Because solids interact through their surfaces, crystal shape can influence both ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.