Show simple item record

dc.contributor.authorWang, Y.
dc.contributor.authorSong, A.
dc.contributor.authorWang, L.
dc.contributor.authorSun, Jie
dc.date.accessioned2017-04-28T13:57:46Z
dc.date.available2017-04-28T13:57:46Z
dc.date.created2017-04-28T09:06:07Z
dc.date.issued2017
dc.identifier.citationWang, Y. and Song, A. and Wang, L. and Sun, J. 2017. Maximum principle via Malliavin calculus for regular-singular stochastic differential games. Optimization Letters. In Press.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/52153
dc.identifier.doi10.1007/s11590-017-1120-2
dc.description.abstract

We consider non-zero-sum regular-singular stochastic differential games, where the informations available to the two players are asymmetry partial informations. The control strategy of each player consists of two components: regular control and singular control. Applying the Malliavin calculus approach, we establish a necessary maximum principle for the games, where the adjoint processes are explicitly represented by the parameters and the states of the system.

dc.publisherSpringer Verlag
dc.titleMaximum principle via Malliavin calculus for regular-singular stochastic differential games
dc.typeJournal Article
dcterms.source.startPage1
dcterms.source.endPage14
dcterms.source.issn1862-4472
dcterms.source.titleOptimization Letters
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record