Deep-scattering layer, gas-bladder density, and size estimates using a two-frequency acoustic and optical probe
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 International Council for the Exploration of the Sea. All rights reserved.Estimating the biomass of gas-bladdered organisms in the mesopelagic ocean is a simple first step to understanding ecosystem structure. An existing two-frequency (38 and 120 kHz) acoustic and optical probe was lowered to 950 m to estimate the number and size of gas-bladders. In situ target strengths from 38 and 120 kHz and their difference were compared with those of a gas-bladder resonance-scattering model. Predicted mean equivalent spherical radius gas-bladder size varied with depth, ranging from 2.1 mm (shallow) to 0.6 mm (deep). Density of night-time organisms varied throughout the water column and were highest (0.019 m-3) in the 200-300 m depth range. Predictions of 38 kHz volume-backscattering strength (Sv) from the density of gas-bladdered organisms could explain 88% of the vessel's 38 kHz Sv at this location (S 40.9, E 166.7). Catch retained by trawls highlighted the presence of gas-bladdered fish of a similar size range but different densities while optical measurements highlighted the depth distribution and biomass of gas-inclusion siphonophores. Organism behaviour and gear selectivity limits the validation of acoustic estimates. Simultaneous optical verification of multifrequency or broadband acoustic targets at depth are required to verify the species, their size and biomass.
Related items
Showing items related by title, author, creator and subject.
-
Parsons, Miles James Gerard (2009)Techniques of single- and multi-beam active acoustics and the passive recording of fish vocalisations were employed to evaluate the benefits and limitations of each technique as a method for assessing and monitoring fish ...
-
Kloser, Rudolf J (2007)The background to this thesis is Australia’s Oceans Policy, which aims to develop an integrated and ecosystem-based approach to planning and management. An important part of this approach is the identification of natural ...
-
Mohr, R.; Whitchurch, E.; Anderson, R.; Forlano, P.; Fay, R.; Ketten, Darlene; Cox, T.; Sisneros, J. (2017)© 2017 Wiley Periodicals, Inc. The plainfin midshipman fish, Porichthys notatus, is a nocturnal marine teleost that uses social acoustic signals for communication during the breeding season. Nesting type I males produce ...