Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite.
Related items
Showing items related by title, author, creator and subject.
-
Nomani, J.; Pramanik, Alokesh; Hilditch, T.; Littlefair, G. (2017)Duplex stainless alloys are extremely sensitive to cutting speed for strain hardening during machining. Tool wear for these materials is dominated by the adhesion wear because of formation of built-up edge (BUE) that ...
-
Hossain, R.; Pahlevani, F.; Quadir, Md Zakaria; Sahajwalla, V. (2016)Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained ...
-
Nomani, J.; Pramanik, Alokesh; Hilditch, T.; Littlefair, G. (2015)This paper investigates the chip formation mechanism and machinability of two-phase materials, such as, wrought duplex stainless steel alloys SAF 2205 and SAF 2507. SEM and optical microscopic details of the frozen cutting ...