Colloidal stabilization of calcium carbonate prenucleation clusters with silica
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Calcium carbonate precipitation proceeds via a complex multistage scenario involving neutral ion clusters as precursors and amorphous phases as intermediates, which finally transform to crystals. Although the existence of stable clusters in solution prior to nucleation has been demonstrated, the molecular mechanisms by which they precipitate are still obscure. Here, direct insight into the processes that drive the transformation of individual clusters into amorphous nanoparticles is provided by progressive colloidal stabilization of different transient states in silica-containing environments. Nucleation of calcium carbonate in the presence of silica can only take place via cluster aggregation at low pH values. At higher pH, prenucleation clusters become colloidally stabilized and cannot aggregate. Nucleation through structural reorganization within the clusters is not observed under these conditions, indicating that this pathway is blocked by kinetic and/or thermodynamic means. The degree of stabilization against nucleation is found to be sufficient to allow for a dramatic enrichment of solutions with prenucleation clusters and enable their isolation into the dry state. This approach renders direct analyses of the clusters by conventional techniques possible and is thus likely to facilitate deeper insight into the chemistry and structure of these elusive species in the future. Under suitable conditions, added silica binds to ion clusters that exist in CaCO 3 solutions prior to nucleation. The resulting colloidal interactions can be tuned to either fully prevent nucleation and isolate the clusters or allow for their gradual transformation into amorphous nanoparticles. The processes underlying homogeneous nucleation of CaCO 3 become decelerated and can be observed experimentally. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Related items
Showing items related by title, author, creator and subject.
-
Dyer, Laurence G (2010)Ferrihydrite is a common iron oxyhydroxide, produced both naturally and industrially. It is often found in association with silica; an example of this is its occurrence in the Paragoethite process applied in zinc ...
-
Gebauer, Denis; Kellermeier, Matthias; Gale, Julian; Bergstrom, Lennart; Colfen, Helmut (2014)Crystallisation is at the heart of various scientific disciplines, but still the understanding of the molecular mechanisms underlying phase separation and the formation of the first solid particles in aqueous solution is ...
-
Burgos-Cara, A.; Putnis, Christine; Rodriguez-Navarro, C.; Ruiz-Agudo, E. (2017)© 2017 by the authors. Licensee MDPI, Basel, Switzerland. Recent experimental evidence and computer modeling have shown that the crystallization of a range of minerals does not necessarily follow classical models and ...