Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Understanding age-specific dispersal in fishes through hydrodynamic modelling, genetic simulations and microsatellite DNA analysis

    Access Status
    Fulltext not available
    Authors
    Berry, O.
    England, P.
    Marriott, R.
    Burridge, C.
    Newman, Stephen
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Berry, O. and England, P. and Marriott, R. and Burridge, C. and Newman, S. 2012. Understanding age-specific dispersal in fishes through hydrodynamic modelling, genetic simulations and microsatellite DNA analysis. Molecular Ecology. 21 (9): pp. 2145-2159.
    Source Title
    Molecular Ecology
    DOI
    10.1111/j.1365-294X.2012.05520.x
    ISSN
    0962-1083
    School
    Department of Environment and Agriculture
    URI
    http://hdl.handle.net/20.500.11937/52374
    Collection
    • Curtin Research Publications
    Abstract

    Many marine species have vastly different capacities for dispersal during larval, juvenile and adult life stages, and this has the potential to complicate the identification of population boundaries and the implementation of effective management strategies such as marine protected areas. Genetic studies of population structure and dispersal rarely disentangle these differences and usually provide only lifetime-averaged information that can be considered by managers. We address this limitation by combining age-specific autocorrelation analysis of microsatellite genotypes, hydrodynamic modelling and genetic simulations to reveal changes in the extent of dispersal during the lifetime of a marine fish. We focus on an exploited coral reef species, Lethrinus nebulosus, which has a circum-tropical distribution and is a key component of a multispecies fishery in northwestern Australia. Conventional population genetic analyses revealed extensive gene flow in this species over vast distances (up to 1500 km). Yet, when realistic adult dispersal behaviours were modelled, they could not account for these observations, implying adult dispersal does not dominate gene flow. Instead, hydrodynamic modelling showed that larval L. nebulosus are likely to be transported hundreds of kilometres, easily accounting for the observed gene flow. Despite the vast scale of larval transport, juvenile L. nebulosus exhibited fine-scale genetic autocorrelation, which declined with age. This implies both larval cohesion and extremely limited juvenile dispersal prior to maturity. The multidisciplinary approach adopted in this study provides a uniquely comprehensive insight into spatial processes in this marine fish. © 2012 Blackwell Publishing Ltd.

    Related items

    Showing items related by title, author, creator and subject.

    • Isolation by resistance across a complex coral reef seascape
      Thomas, L.; Kennington, W.; Stat, Michael; Wilkinson, S.; Kool, J.; Kool, J.T.; Kendrick, G.; Kendrick, G. (2015)
      A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The ...
    • Seascape genomics reveals fine-scale patterns of dispersal for a reef fish along the ecologically divergent coast of Northwestern Australia
      Di Battista, Joseph; Travers, M.; Moore, G.; Evans, R.; Newman, Stephen; Feng, M.; Moyle, S.; Gorton, R.; Saunders, T.; Berry, O. (2017)
      Understanding the drivers of dispersal among populations is a central topic in marine ecology and fundamental for spatially explicit management of marine resources. The extensive coast of Northwestern Australia provides ...
    • Limited ecological population connectivity suggests low demands on self-recruitment in a tropical inshore marine fish (Eleutheronema tetradactylum: Polynemidae)
      Horne, J.; Momigliano, P.; Welch, D.; Newman, Stephen; Van Herwerden, L. (2011)
      The diversity of geographic scales at which marine organisms display genetic variation mirrors the biophysical and ecological complexity of dispersal by pelagic larvae. Yet little is known about the effect of larval ecology ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.