Understanding age-specific dispersal in fishes through hydrodynamic modelling, genetic simulations and microsatellite DNA analysis
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Many marine species have vastly different capacities for dispersal during larval, juvenile and adult life stages, and this has the potential to complicate the identification of population boundaries and the implementation of effective management strategies such as marine protected areas. Genetic studies of population structure and dispersal rarely disentangle these differences and usually provide only lifetime-averaged information that can be considered by managers. We address this limitation by combining age-specific autocorrelation analysis of microsatellite genotypes, hydrodynamic modelling and genetic simulations to reveal changes in the extent of dispersal during the lifetime of a marine fish. We focus on an exploited coral reef species, Lethrinus nebulosus, which has a circum-tropical distribution and is a key component of a multispecies fishery in northwestern Australia. Conventional population genetic analyses revealed extensive gene flow in this species over vast distances (up to 1500 km). Yet, when realistic adult dispersal behaviours were modelled, they could not account for these observations, implying adult dispersal does not dominate gene flow. Instead, hydrodynamic modelling showed that larval L. nebulosus are likely to be transported hundreds of kilometres, easily accounting for the observed gene flow. Despite the vast scale of larval transport, juvenile L. nebulosus exhibited fine-scale genetic autocorrelation, which declined with age. This implies both larval cohesion and extremely limited juvenile dispersal prior to maturity. The multidisciplinary approach adopted in this study provides a uniquely comprehensive insight into spatial processes in this marine fish. © 2012 Blackwell Publishing Ltd.
Related items
Showing items related by title, author, creator and subject.
-
Thomas, L.; Kennington, W.; Stat, Michael; Wilkinson, S.; Kool, J.; Kool, J.T.; Kendrick, G.; Kendrick, G. (2015)A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The ...
-
Di Battista, Joseph; Travers, M.; Moore, G.; Evans, R.; Newman, Stephen; Feng, M.; Moyle, S.; Gorton, R.; Saunders, T.; Berry, O. (2017)Understanding the drivers of dispersal among populations is a central topic in marine ecology and fundamental for spatially explicit management of marine resources. The extensive coast of Northwestern Australia provides ...
-
Horne, J.; Momigliano, P.; Welch, D.; Newman, Stephen; Van Herwerden, L. (2011)The diversity of geographic scales at which marine organisms display genetic variation mirrors the biophysical and ecological complexity of dispersal by pelagic larvae. Yet little is known about the effect of larval ecology ...