An overview of particle methods for random finite set models
dc.contributor.author | Ristic, B. | |
dc.contributor.author | Beard, Michael | |
dc.contributor.author | Fantacci, C. | |
dc.date.accessioned | 2017-04-28T13:58:39Z | |
dc.date.available | 2017-04-28T13:58:39Z | |
dc.date.created | 2017-04-28T09:06:10Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Ristic, B. and Beard, M. and Fantacci, C. 2016. An overview of particle methods for random finite set models. Information fusion. 31: pp. 110-126. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/52414 | |
dc.identifier.doi | 10.1016/j.inffus.2016.02.004 | |
dc.description.abstract |
This overview paper describes the particle methods developed for the implementation of the class of Bayes filters formulated using the random finite set formalism. It is primarily intended for the readership already familiar with the particle methods in the context of the standard Bayes filter. The focus in on the Bernoulli particle filter, the probability hypothesis density (PHD) particle filter and the generalised labelled multi-Bernoulli (GLMB) particle filter. The performance of the described filters is demonstrated in the context of bearings-only target tracking application. | |
dc.publisher | Elsevier | |
dc.title | An overview of particle methods for random finite set models | |
dc.type | Journal Article | |
dcterms.source.volume | 31 | |
dcterms.source.startPage | 110 | |
dcterms.source.endPage | 126 | |
dcterms.source.issn | 1566-2535 | |
dcterms.source.title | Information fusion | |
curtin.department | School of Electrical Engineering and Computing | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |