Show simple item record

dc.contributor.authorRistic, B.
dc.contributor.authorBeard, Michael
dc.contributor.authorFantacci, C.
dc.date.accessioned2017-04-28T13:58:39Z
dc.date.available2017-04-28T13:58:39Z
dc.date.created2017-04-28T09:06:10Z
dc.date.issued2016
dc.identifier.citationRistic, B. and Beard, M. and Fantacci, C. 2016. An overview of particle methods for random finite set models. Information fusion. 31: pp. 110-126.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/52414
dc.identifier.doi10.1016/j.inffus.2016.02.004
dc.description.abstract

This overview paper describes the particle methods developed for the implementation of the class of Bayes filters formulated using the random finite set formalism. It is primarily intended for the readership already familiar with the particle methods in the context of the standard Bayes filter. The focus in on the Bernoulli particle filter, the probability hypothesis density (PHD) particle filter and the generalised labelled multi-Bernoulli (GLMB) particle filter. The performance of the described filters is demonstrated in the context of bearings-only target tracking application.

dc.publisherElsevier
dc.titleAn overview of particle methods for random finite set models
dc.typeJournal Article
dcterms.source.volume31
dcterms.source.startPage110
dcterms.source.endPage126
dcterms.source.issn1566-2535
dcterms.source.titleInformation fusion
curtin.departmentSchool of Electrical Engineering and Computing
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record