Omics-squared: Human genomic, transcriptomic and phenotypic data for genetic analysis workshop 19
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 The Author(s).Background: The Genetic Analysis Workshops (GAW) are a forum for development, testing, and comparison of statistical genetic methods and software. Each contribution to the workshop includes an application to a specified data set. Here we describe the data distributed for GAW19, which focused on analysis of human genomic and transcriptomic data. Methods: GAW19 data were donated by the T2D-GENES Consortium and the San Antonio Family Heart Study and included whole genome and exome sequences for odd-numbered autosomes, measures of gene expression, systolic and diastolic blood pressures, and related covariates in two Mexican American samples. These two samples were a collection of 20 large families with whole genome sequence and transcriptomic data and a set of 1943 unrelated individuals with exome sequence. For each sample, simulated phenotypes were constructed based on the real sequence data. 'Functional' genes and variants for the simulations were chosen based on observed correlations between gene expression and blood pressure. The simulations focused primarily on additive genetic models but also included a genotype-by-medication interaction. A total of 245 genes were designated as 'functional' in the simulations with a few genes of large effect and most genes explaining < 1 % of the trait variation. An additional phenotype, Q1, was simulated to be correlated among related individuals, based on theoretical or empirical kinship matrices, but was not associated with any sequence variants. Two hundred replicates of the phenotypes were simulated. The GAW19 data are an expansion of the data used at GAW18, which included the family-based whole genome sequence, blood pressure, and simulated phenotypes, but not the gene expression data or the set of 1943 unrelated individuals with exome sequence.
Related items
Showing items related by title, author, creator and subject.
-
Chiu, Y.; Justice, A.; Melton, Phillip (2016)Background: Longitudinal phenotypic data provides a rich potential resource for genetic studies which may allow for greater understanding of variants and their covariates over time. Herein, we review 3 longitudinal ...
-
Mullin, Benjamin H (2011)Previous studies have identified the 3p14-p22 chromosomal region as a quantitative trait locus for bone mineral density (BMD). The overall aim of this thesis is to identify the gene or genes from this region that are ...
-
Melton, Phillip; Peralta, J.; Almasy, L. (2016)© 2016 The Author(s). Background: The incorporation of longitudinal data into genetic epidemiological studies has the potential to provide valuable information regarding the effect of time on complex disease etiology. ...