Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Reproduced with permission from Astronomy & Astrophysics, © ESO
Collection
Abstract
Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations-either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders. © 2013 ESO.
Related items
Showing items related by title, author, creator and subject.
-
McFadden, R.; Ekers, Ronald; Roberts, P. (2012)UHE particle detection using the lunar Cherenkov technique aims to detect nanosecond pulses of Cherenkov emission which are produced during UHE cosmic ray and neutrino interactions in the Moon's regolith. These pulses ...
-
Noutsos, A.; Sobey, C.; Kondratiev, V.; Weltevrede, P.; Verbiest, J.; Karastergiou, A.; Kramer, M.; Kuniyoshi, M.; Alexov, A.; Breton, R.; Bilous, A.; Cooper, S.; Falcke, H.; Grießmeier, J.; Hassall, T.; Hessels, J.; Keane, E.; Oslowski, S.; Pilia, M.; Serylak, M.; Stappers, B.; Ter Veen, S.; Van Leeuwen, J.; Zagkouris, K.; Anderson, K.; Bähren, L.; Bell, M.; Broderick, J.; Carbone, D.; Cendes, Y.; Coenen, T.; Corbel, S.; Eislöffel, J.; Fender, R.; Garsden, H.; Jonker, P.; Law, C.; Markoff, S.; Masters, J.; Miller-Jones, James; Molenaar, G.; Osten, R.; Pietka, M.; Rol, E.; Rowlinson, A.; Scheers, B.; Spreeuw, H.; Staley, T.; Stewart, A.; Swinbank, J.; Wijers, R.; Wijnands, R.; Wise, M.; Zarka, P.; Van Der Horst, A. (2015)Aims: We present the highest-quality polarisation profiles to date of 16 non-recycled pulsars and four millisecond pulsars, observed below 200 MHz with the LOFAR high-band antennas. Based on the observed profiles, we ...
-
McFadden, R.; Ekers, Ronald; Bray, J. (2011)Lunar Cherenkov experiments aim to detect nanosecond pulses of Cherenkov emission produced during UHE cosmic ray or neutrino interactions in the lunar regolith. Pulses from these interactions are dispersed, and therefore ...