Bio-inspired materials science at its best - Flexible mesocrystals of calcite
dc.contributor.author | Gebauer, Denis | |
dc.date.accessioned | 2017-04-28T13:59:00Z | |
dc.date.available | 2017-04-28T13:59:00Z | |
dc.date.created | 2017-04-28T09:06:17Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Gebauer, D. 2013. Bio-inspired materials science at its best - Flexible mesocrystals of calcite. Angewandte Chemie - International Edition. 52 (32): pp. 8208-8209. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/52518 | |
dc.identifier.doi | 10.1002/anie.201303933 | |
dc.description.abstract |
Minerals are the benchmark of hard and brittle materials. Self-assembled calcitic spicules were recently obtained utilizing a protein from silica biomineralization, silicatein-a. The synthetic spicules show remarkable material properties including extreme flexibility. Breakthroughs in bio-inspired materials science are highlighted. Will it be possible to obtain similar composites with truly artificial organic constituents? Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | |
dc.publisher | Wiley-VCH Verlag | |
dc.title | Bio-inspired materials science at its best - Flexible mesocrystals of calcite | |
dc.type | Journal Article | |
dcterms.source.volume | 52 | |
dcterms.source.number | 32 | |
dcterms.source.startPage | 8208 | |
dcterms.source.endPage | 8209 | |
dcterms.source.issn | 1433-7851 | |
dcterms.source.title | Angewandte Chemie - International Edition | |
curtin.department | Department of Chemistry | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |