Show simple item record

dc.contributor.authorBaddeley, Adrian
dc.contributor.authorNair, G.
dc.contributor.authorRakshit, Suman
dc.contributor.authorMcSwiggan, G.
dc.date.accessioned2017-04-28T13:59:00Z
dc.date.available2017-04-28T13:59:00Z
dc.date.created2017-04-28T09:06:09Z
dc.date.issued2017
dc.identifier.citationBaddeley, A. and Nair, G. and Rakshit, S. and McSwiggan, G. 2017. “Stationary” point processes are uncommon on linear networks. Stat. 6 (1): pp. 68-78.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/52519
dc.identifier.doi10.1002/sta4.135
dc.description.abstract

Statistical methodology for analysing patterns of points on a network of lines, such as road traffic accident locations, often assumes that the underlying point process is “stationary” or “correlation-stationary.” However, such processes appear to be rare. In this paper, popular procedures for constructing a point process are adapted to linear networks: many of the resulting models are no longer stationary when distance is measured by the shortest path in the network. This undermines the rationale for popular statistical methods such as the K-function and pair correlation function. Alternative strategies are proposed, such as replacing the shortest-path distance by another metric on the network. Copyright © 2017 John Wiley & Sons, Ltd.

dc.title“Stationary” point processes are uncommon on linear networks
dc.typeJournal Article
dcterms.source.volume6
dcterms.source.number1
dcterms.source.startPage68
dcterms.source.endPage78
dcterms.source.issn2049-1573
dcterms.source.titleStat
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record