The LOFAR radio environment
Access Status
Authors
Date
2012Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Aims. This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods. We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz/1 s resolution. Results. We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linearly when decreasing the data frequency resolution. Conclusions. Currently, by using an automated RFI detection strategy, the LOFAR radio environment poses no perceivable problems for sensitive observing. It remains to be seen if this is still true for very deep observations that integrate over tens of nights, but the situation looks promising. Reasons for the low impact of RFI are the high spectral and time resolution of LOFAR; accurate detection methods; strong filters and high receiver linearity; and the proximity of the antennas to the ground. We discuss some strategies that can be used once low-level RFI starts to become apparent. It is important that the frequency range of LOFAR remains free of broadband interference, such as DAB stations and windmills. © 2012 ESO.
Related items
Showing items related by title, author, creator and subject.
-
Stappers, B.; Hessels, J.; Alexov, A.; Anderson, K.; Coenen, T.; Hassall, T.; Karastergiou, A.; Kondratiev, V.; Kramer, M.; van Leeuwen, J.; Mol, J.; Noutsos, A.; Romein, J.; Weltevrede, P.; Fender, R.; Wijers, R.; Baehren, L.; Bell, M.; Broderick, J.; Daw, E.; Dhillon, V.; Eisloeffel, J.; Falcke, H.; Griessmeier, J.; Law, C.; Markoff, S.; Miller-Jones, James; Scheers, B.; Spreeuw, H.; Swinbank, J.; ter Veen, S.; Wise, M.; Wucknitz, O.; Zarka, P.; Anderson, J.; Asgekar, A.; Avruch, I.; Beck, R.; Bennema, P.; Bentum, M.; Best, P.; Bregman, J.; Brentjens, M.; van de Brink, R.; Broekema, P.; Brouw, W.; Brueggen, M.; de Bruyn, A.; Butcher, H.; Ciardi, B.; Conway, J.; Dettmar, R.; van Duin, A.; van Enst, J.; Garrett, M.; Gerbers, M.; Grit, T.; Gunst, A.; van Haarlem, M.; Hamaker, J.; Heald, G.; Hoeft, M.; Holties, H.; Horneffer, A.; Koopmans, L.; Kuper, G.; Loose, M.; Maat, P.; McKay-Bukowski, D.; McKean, J.; Miley, G.; Morganti, R.; Nijboer, R.; Noordam, J.; Norden, M.; Olofsson, H.; Pandey-Pommier, M.; Polatidis, A.; Reich, W.; Roettgering, H.; Schoenmakers, A.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Sterks, C.; Tagger, M.; Tang, Y.; Vermeulen, R.; Vermaas, N.; Vogt, C.; de Vos, M.; Wijnholds, S.; Yatawatta, S.; Zensus, J. (2011)Low frequency radio waves, while challenging to observe, are a rich source of information about pulsars. The LOw Frequency ARray (LOFAR) is a new radio interferometer operating in the lowest 4 octaves of the ionospheric ...
-
Weeren, R.; Williams, W.; Hardcastle, M.; Shimwell, T.; Rafferty, D.; Sabater, J.; Heald, G.; Sridhar, S.; Dijkema, T.; Brunetti, G.; Brüggen, M.; Andrade-Santos, F.; Ogrean, G.; Röttgering, H.; Dawson, W.; Forman, W.; Gasperin, F.; Jones, C.; Miley, G.; Rudnick, L.; Sarazin, C.; Bonafede, A.; Best, P.; Birzan, L.; Cassano, R.; Chyzy, K.; Croston, J.; Ensslin, T.; Ferrari, C.; Hoeft, M.; Horellou, C.; Jarvis, M.; Kraft, R.; Mevius, M.; Intema, Hubertus; Murray, S.; Orrú, E.; Pizzo, R.; Simionescu, A.; Stroe, A.; Tol, S.; White, G. (2016)LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also ...
-
van Haarlem, M.; Wise, M.; Gunst, A.; Miller-Jones, James (2013)LOFAR, the LOw-Frequency ARray, is a new-generation radio interferometer constructed in the north of the Netherlands and across Europe. Utilizing a novel phased-array design, LOFAR covers the largely unexplored low-frequency ...