Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
Cobaltite-based double perovskite oxides with high electrocatalytic activity and conductivity have been developed as high-performance cathode alternatives for solid oxide fuel cells (SOFCs). However, the use of cobaltite-based double perovskites on Y2O3 stabilized ZrO2 (YSZ)-based SOFCs requires the application of a doped ceria barrier layer. This is due to their poor chemical and physical compatibility with the YSZ electrolyte during high-temperature sintering and fabrication processes. Here we report a viable approach to in operando assemble double perovskites such as PrBa0.5Sr0.5Co1.5Fe0.5O5+d (PBSCF), on YSZ electrolyte and thus effectively form an electrode/electrolyte interface without high-temperature processing. The electrochemical performance of the in situ assembled PBSCF cathode is comparable to that of the cathode prepared by conventional methods. A single cell with an in situ assembled PBSCF-GDC (Gd-doped ceria) cathode achieved a peak power density (PPD) of 1.37 W cm-2 at 750 °C and exhibited a high stability at 500 mA cm-2 and 750 °C for 100 h. Surface and cross-sectional microstructure analysis offer solid evidence that the PBSCF-GDC cathode/YSZ electrolyte interface was formed by electrochemical polarization. This work offers new opportunities to effectively and effortlessly use high-performance double perovskite cathodes in commercial SOFCs.
Related items
Showing items related by title, author, creator and subject.
-
Lin, Y.; Ran, R.; Zhang, C.; Cai, R.; Shao, Zongping (2010)The potential application of PrBaCo2O5-d (PBC) double perovskite oxide as a cathode for a proton-conducting solid-oxide fuel cell based on a BaZr0.1Ce0.7Y0.2O 3-d(BZCY) electrolyte was systematically investigated. XRD and ...
-
Chen, K.; He, S.; Li, N.; Cheng, Y.; Ai, N.; Chen, M.; Rickard, William; Zhang, T.; Jiang, S. (2018)© 2017 Elsevier B.V. La 0.6 Sr 0.2 Co 0.2 Fe 0.8 O 3-d (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and ...
-
Li, X.; Jin, Z.; Wang, C.; Peng, R.; Zha, Y.; Cao, J.; Ji, Y.; Shao, Zongping (2024)Robust catalytic materials with high activity and stability play important roles in energy conversion and storage devices such as protonic ceramic fuel cells (PCFCs), in which a favourable cathode should possess high ...