Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: New constraints from phase equilibria modeling and SIMS U-Pb zircon dating

    Access Status
    Fulltext not available
    Authors
    Jiao, Shujuan
    Fitzsimons, Ian
    Guo, J.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Jiao, S. and Fitzsimons, I. and Guo, J. 2017. Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: New constraints from phase equilibria modeling and SIMS U-Pb zircon dating. Precambrian Research. In Press.
    Source Title
    Precambrian Research
    DOI
    10.1016/j.precamres.2017.03.024
    ISSN
    0301-9268
    School
    Department of Applied Geology
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150102773
    URI
    http://hdl.handle.net/20.500.11937/52782
    Collection
    • Curtin Research Publications
    Abstract

    The P-T-t path and tectonic setting of Paleoproterozoic UHT metamorphism in the Khondalite Belt of the North China Craton are controversial, but important new constraints are provided by phase equilibria modeling and SIMS U-Pb dating of Grt-Sil-Spl-Spr granulites from the Dongpo locality. These metapelitic granulites are composed of garnet, sillimanite, plagioclase, biotite, spinel, sapphirine, rutile, ilmenite, and rare cordierite, but lack quartz and K-feldspar. Such refractory whole-rock compositions indicate that the Dongpo granulites had undergone high-grade metamorphism and substantial melt loss prior to peak UHT conditions. Four metamorphic stages are recognized based on petrography, mineral chemistry and reaction analysis. The earliest M1 stage is recorded by cores (zone 1) of garnet porphyroblasts and coarse-grained plagioclase, sillimanite, biotite and spinel in the matrix. This was overprinted by the M2 assemblage comprising the mantles (inner zone 2) of garnet porphyroblasts, Spr±Spl+Pl intergrowths, and sapphirine coronas that surround spinel, and then by the development of Sil+Bt and outermost zone 2 of Grt3 (M3) and minor Crd+Ilm (M4). Pseudosections calculated for different effective bulk compositions constrain the P-T conditions of M1 to ca. 9.0-10.0kbar and 850-920°C, and M2 to 7.3-9.0kbar and 910-1020°C. If M1-M4 assemblages developed during a single tectonic cycle, these results define a clockwise P-T path comprising M1-M2 decompression heating, followed by M2-M4 cooling and decompression. SIMS U-Pb analysis reveals three generations of metamorphic zircon that show evolving HREE contents consistent with zircon crystallization during or after garnet growth. A poorly defined zircon population at ca. 1.94-1.90Ga is ascribed to pre- to syn-M1 metamorphism, while ca. 1.85Ga and =1.82Ga zircon are linked to post-UHT M2-M3 and M3-M4 retrogression respectively. These age data suggest a minimum 50Myr duration for high-T to UHT metamorphism, consistent with prolonged radiogenic heating in thickened crust, provided that M1 and M2 are part of a single tectonic cycle in which case they are likely to reflect collision and extension respectively. Alternatively, M1 and M2 might be unrelated events, with M2 UHT metamorphism linked to mantle-derived magmatism at least ca. 50Myr after M1 collisional orogenesis.

    Related items

    Showing items related by title, author, creator and subject.

    • Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust
      Wang, R.; Collins, Bill; Weinberg, R.; Li, J.; Li, Q.; He, W.; Richards, J.; Hou, Z.; Zhou, L.; Stern, R. (2016)
      Felsic granulite xenoliths entrained in Miocene (~13 Ma) isotopically evolved, mantle-derived ultrapotassic volcanic (UPV) dykes in southern Tibet are refractory meta-granitoids with garnet and rutile in a near-anhydrous ...
    • High-temperature S-type granitoids (charnockites) in the Jining complex, North China Craton: Restite entrainment and hybridization with mafic magma
      Wang, L.; Guo, J.; Yin, C.; Peng, P.; Zhang, J.; Spencer, Christopher; Qian, J. (2018)
      The Liangcheng garnet granitoids are parautochthonous S-type granites that occur within granulite-facies metasediments in the ultrahigh-temperature (UHT) Jining Complex, eastern part of the Khondalite Belt, North China ...
    • Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes
      Taylor, Richard; Harley, S.; Hinton, R.; Elphick, S.; Clark, Christopher; Kelly, N. (2014)
      The partitioning of rare earth elements (REE) between zircon, garnet and silicate melt was determined using synthetic compositions designed to represent partial melts formed in the lower crust during anatexis. The ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.