Evaluating privacy-preserving record linkage using cryptographic long-term keys and multibit trees on large medical datasets.
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Background: Integrating medical data using databases from different sources by record linkage is a powerful technique increasingly used in medical research. Under many jurisdictions, unique personal identifiers needed for linking the records are unavailable. Since sensitive attributes, such as names, have to be used instead, privacy regulations usually demand encrypting these identifiers. The corresponding set of techniques for privacy-preserving record linkage (PPRL) has received widespread attention. One recent method is based on Bloom filters. Due to superior resilience against cryptographic attacks, composite Bloom filters (cryptographic long-term keys, CLKs) are considered best practice for privacy in PPRL. Real-world performance of these techniques using large-scale data is unknown up to now. Methods: Using a large subset of Australian hospital admission data, we tested the performance of an innovative PPRL technique (CLKs using multibit trees) against a gold-standard derived from clear-text probabilistic record linkage. Linkage time and linkage quality (recall, precision and F-measure) were evaluated. Results: Clear text probabilistic linkage resulted in marginally higher precision and recall than CLKs. PPRL required more computing time but 5 million records could still be de-duplicated within one day. However, the PPRL approach required fine tuning of parameters. Conclusions: We argue that increased privacy of PPRL comes with the price of small losses in precision and recall and a large increase in computational burden and setup time. These costs seem to be acceptable in most applied settings, but they have to be considered in the decision to apply PPRL. Further research on the optimal automatic choice of parameters is needed.
Related items
Showing items related by title, author, creator and subject.
-
Brown, A.; Randall, Sean; Ferrante, A.; Semmens, J.; Boyd, J. (2017)Background: Probabilistic record linkage is a process used to bring together person-based records from within the same dataset (de-duplication) or from disparate datasets using pairwise comparisons and matching probabilities. ...
-
Boyd, James; Randall, Sean; Ferrante, Anna (2015)Record linkage is the process of bringing together data relating to the same individual within and between different datasets. These integrated datasets provide diverse and rich resources for researchers without the cost ...
-
Vidanage, Anushka; Ranbaduge, Thilina; Christen, Peter; Randall, Sean (2020)Over the last decade, the demand for linking records about people across databases has increased in various domains. Privacy challenges associated with linking sensitive information led to the development of privacy-preserving ...