Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10−4 emu g−1 oe−1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10−4 emu g−1 oe−1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ∼NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon εHf(t), TDMC ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative εHf(t) (−16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices (fO2 and εHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an exploration context for the west Central Lhasa subterrane, features indicative of potential fertility might include more oxidized, positive εHf(t), young rocks (<130 Ma).
Related items
Showing items related by title, author, creator and subject.
-
Li, S.; Wang, T.; Wilde, Simon; Tong, Y. (2013)Numerous Early Mesozoic granitoids have been recognized from the central segment of the Central Asian Orogenic Belt (CAOB). They can be broadly classified into two groups according to zircon U–Pb ages: an early-stage group ...
-
Cao, M.; Qin, K.; Li, G.; Evans, Noreen; Hollings, P.; Jin, L. (2016)© 2016 Elsevier B.V. The Baogutu porphyry Cu deposit is a typical reduced porphyry Cu deposit, likely related to ilmenite-series I-type granitoids. However, the nature of the granitoids (ilmenite-series or magnetite-series) ...
-
Zhu, K.; Li, Z.; Xia, Q.; Xu, X.; Wilde, Simon; Chen, H. (2017)© 2017 Elsevier B.V. Whole-rock and mineral geochemical data are used to place new constraints on the petrogenesis and tectonic setting of Mesozoic granitoids (including syenites) in eastern South China. In the Early ...