Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Initial pore pressures under the Lusi mud volcano, Indonesia

    Access Status
    Fulltext not available
    Authors
    Tingay, Mark
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tingay, M. 2015. Initial pore pressures under the Lusi mud volcano, Indonesia. Interpretation. 3 (1): pp. SE33-SE49.
    Source Title
    Interpretation
    DOI
    10.1190/INT-2014-0092.1
    ISSN
    2324-8858
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/53265
    Collection
    • Curtin Research Publications
    Abstract

    The Lusi mud volcano of East Java, Indonesia, remains one of the most unusual geologic disasters of modern times. Since its sudden birth in 2006, Lusi has erupted continuously, expelling more than 90 million cubic meters of mud that has displaced approximately 40,000 people. This study undertakes the first detailed analysis of the pore pressures immediately prior to the Lusi mud volcano eruption by compiling data from the adjacent (150 m away) Banjar Panji-1 wellbore and undertaking pore pressure prediction from carefully compiled petrophysical data. Wellbore fluid influxes indicate that sequences under Lusi are overpressured from only 350 m depth and follow an approximately lithostat-parallel pore pressure increase through Pleistocene clastic sequences (to 1870 m depth) with pore pressure gradients up to 17.2 MPa/km. Most unusually, fluid influxes, a major kick, connection gases, elevated background gases, and offset well data confirm that high-magnitude overpressures also exist in the Plio-Pleistocene volcanic sequences (1870 to approximately 2833 m depth) and Miocene (Tuban Formation) carbonates, with pore pressure gradients of 17.2-18.4 MPa/km. The varying geology under the Lusi mud volcano poses a number of challenges for determining overpressure origin and undertaking pore pressure prediction. Overpressures in the fine-grained and rapidly deposited Pleistocene clastics have a petrophysical signature typical of disequilibrium compaction and can be reliably predicted from sonic, resistivity, and drilling exponent data. However, it is difficult to establish the overpressure origin in the low-porosity volcanic sequences and Miocene carbonates. Similarly, the volcanics do not have any clear porosity anomaly, and thus pore pressures in these sequences are greatly underestimated by standard prediction methods. The analysis of preeruption pore pressures underneath the Lusi mud volcano is important for understanding the mechanics, triggering, and longevity of the eruption, as well as providing a valuable example of the unknowns and challenges associated with overpressures in nonclastic rocks.

    Related items

    Showing items related by title, author, creator and subject.

    • Origin and petrophysical log response of overpressures in the Baram Delta province, Brunei.
      Tingay, Mark; Hillis, R.; Swarbrick, R.; Morley, C. (2005)
      The ‘window’ of safe mud weights between pore pressure and fracture pressure is narrower in overpressured sediments than in normally pressured sediments. This ‘window’ also controls the maximum buoyancy pressure, and hence ...
    • Thermal History and Deep Overpressure Modelling in the Northern Carnarvon Basin, North West Shelf, Australia
      He, Sheng (2002)
      The Northern Carnarvon Basin is the richest petroleum province in Australia. About 50 gas/condensate and oil fields, associated mainly with Jurassic source rocks, have been discovered in the sub-basins and on the Rankin ...
    • Pore pressure/stress coupling in Brunei Darussalam - implications for shale injection
      Tingay, Mark; Swarbrick, R.; Okpere, E. (2003)
      Shale dykes, diapirs and mud volcanoes are common in the onshore and offshore regions of Brunei Darussalam. Outcrop examples show that shale has intruded along both faults and tensile fractures. Conventional models of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.