Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Ultrasonic measurements on thin samples: Experiment and numerical modeling

    Access Status
    Fulltext not available
    Authors
    Yurikov, A.
    Lebedev, Maxim
    Pervukhina, M.
    Date
    2016
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Yurikov, A. and Lebedev, M. and Pervukhina, M. 2016. Ultrasonic measurements on thin samples: Experiment and numerical modeling, in SEG International Exposition and 86th Annual Meeting, Technical Program Expanded Abstracts, pp. 3338-3342.
    Source Title
    SEG Technical Program Expanded Abstracts
    DOI
    10.1190/segam2016-13824473.1
    ISSN
    1052-3812
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/53574
    Collection
    • Curtin Research Publications
    Abstract

    Ultrasonic velocity measurement method is a common practice for measuring elastic properties of rocks in laboratories. Standard cylindrical plugs of 40-100 mm length and 20-38 mm in diameter are usually used for such measurements. However, the maximal sizes of samples are sometimes restricted, especially when ultrasonic measurements are combined with desaturation/rehydration or dielectric analysis experiments. Such experiments are performed on relatively thin discs (~15 mm in length). However, the reliability of the results obtained on thin discs is unclear, as no direct comparison with results obtained on standard samples has been reported yet. Here we present results of laboratory ultrasonic measurements for a suite of thin and standard samples conducted under high confining pressure. Compressional and shear waves velocities obtained on thin and standard samples match each other within the experimental errors. We also present results of numerical simulations to support the outcome of the experimental work and to improve the understanding of wave propagation in the samples during laboratory ultrasonic measurements. The finite element method is used to simulate wave propagation along the experimental set-up caused by transmitted ultrasonic pulse. The results of the numerical modeling prove that transducers working in share mode also produce a compressional wave that propagates along the sample and can be recorded by a receiver. Simulated travel times of elastic waves are in a good agreement with experimentally obtained results.

    Related items

    Showing items related by title, author, creator and subject.

    • Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation
      Grochau, Marcos Hexsel (2009)
      Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
    • Ultrasonic velocity measurements on thin rock samples: Experiment and numerical modeling
      Yurikov, A.; Lebedev, Maxim; Pervukhina, Marina (2018)
      The ultrasonic pulse transmission (UPT) method has been the gold standard for laboratory measurements of rock elastic properties for decades, and it is used by oil and gas industry and service companies routinely. In spite ...
    • Observation of a critically refracted converted SP wave using laser Doppler interferometer
      Gurevich, B.; Lebedev, M.; Madadi, M.; Bona, Andrej; Pevzner, R. (2015)
      Laboratory measurements of elastic properties of rocks are important for calibration of seismic data and for corroboration of theoretical models of rocks. The most common way of determining the elastic properties of rock ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.