Nonlinear filtering update phase via the single point truncated unscented Kalman filter
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
A fast algorithm to approximate the first two moments of the posterior probability density function (pdf) in nonlinear non-Gaussian Bayesian filtering is proposed. If the pdf of the measurement noise has a bounded support and the measurement function is continuous and bijective, we can use a modified prior pdf that meets Bayes' rule exactly. The central idea of this paper is that a Kalman filter applied to a modified prior distribution can improve the estimate given by the conventional Kahnan filter. In practice, bounded support is not required and the modification of the prior is accounted for by adding an extra-point to the set of sigma-points used by the unscented Kalman filter. © 2011 IEEE.
Related items
Showing items related by title, author, creator and subject.
-
Tseng, Chien H. (1999)The design of envelope-constrained (EC) filters is considered for the time-domain synthesis of filters for signal processing problems. The objective is to achieve minimal noise enhancement where the shape of the filter ...
-
Huo, Jiaquan (2004)The main theme of this thesis is the control of acoustic echoes for modem voice communication systems by means of echo cancellation. Two important issues in acoustic echo cancellation, namely the efficient adaptation of ...
-
Mullins, Benjamin; King, Andrew; Braddock, R. (2011)Fibrous filters are used extensively in a range of applications, including process engineering, automotive filtration and for worker (respiratory) protection. These filters are usually a felted, nonwoven structure of ...