A full-plate global reconstruction of the Neoproterozoic
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Neoproterozoic tectonic geography was dominated by the formation of the supercontinent Rodinia, its break-up and the subsequent amalgamation of Gondwana. The Neoproterozoic was a tumultuous time of Earth history, with large climatic variations, the emergence of complex life and a series of continent-building orogenies of a scale not repeated until the Cenozoic. Here we synthesise available geological and palaeomagnetic data and build the first full-plate, topological model of the Neoproterozoic that maps the evolution of the tectonic plate configurations during this time. Topological models trace evolving plate boundaries and facilitate the evaluation of "plate tectonic rules" such as subduction zone migration through time when building plate models. There is a rich history of subduction zone proxies preserved in the Neoproterozoic geological record, providing good evidence for the existence of continent-margin and intra-oceanic subduction zones through time. These are preserved either as volcanic arc protoliths accreted in continent-continent, or continent-arc collisions, or as the detritus of these volcanic arcs preserved in successor basins. Despite this, we find that the model presented here still predicts less subduction (ca. 90%) than on the modern earth, suggesting that we have produced a conservative model and are likely underestimating the amount of subduction, either due to a simplification of tectonically complex areas, or because of the absence of preservation in the geological record (e.g. ocean-ocean convergence). Furthermore, the reconstruction of plate boundary geometries provides constraints for global-scale earth system parameters, such as the role of volcanism or ridge production on the planet's icehouse climatic excursion during the Cryogenian. Besides modelling plate boundaries, our model presents some notable departures from previous Rodinia models. We omit India and South China from Rodinia completely, due to long-lived subduction preserved on margins of India and conflicting palaeomagnetic data for the Cryogenian, such that these two cratons act as 'lonely wanderers' for much of the Neoproterozoic. We also introduce a Tonian-Cryogenian aged rotation of the Congo-São Francisco Craton relative to Rodinia to better fit palaeomagnetic data and account for thick passive margin sediments along its southern margin during the Tonian. The GPlates files of the model are released to the public and it is our expectation that this model can act as a foundation for future model refinements, the testing of alternative models, as well as providing constraints for both geodynamic and palaeoclimate models.
Related items
Showing items related by title, author, creator and subject.
-
Brown, M.; Johnson, Tim (2018)© 2018 Walter de Gruyter GmbH, Berlin/Boston 2018. On the contemporary Earth, distinct plate tectonic settings are characterized by differences in heat flow that are recorded in metamorphic rocks as differences in apparent ...
-
Harley, S.; Fitzsimons, Ian; Zhao, Y. (2013)The Antarctic rock record spans some 3.5 billion years of history, and has made important contributions to our understanding of how Earth's continents assemble and disperse through time. Correlations between Antarctica ...
-
Li, Zheng-Xiang ; Liu, Yebo; Ernst, Richard (2023)Establishing how tectonic plates have moved since deep time is essential for understanding how Earth's geodynamic system has evolved and operates, thus answering longstanding questions such as what “drives” plate tectonics. ...