Quantifying the evolution of the continental and oceanic crust
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
A better understanding of how zircon ages vary with time requires sophisticated statistical analysis of U/Pb isotopic ages from both bedrock and detrital zircon databases. Researchers mostly interpret variation in the preserved zircon age distribution as representing periods of enhanced production of continental crust coupled with recycling of older crust. Yet, estimates from several global databases show considerable variation, which suggests the need for standardizing sampling and statistical analysis methods. Grid-area sampling and modern sediment sampling are proposed for future database development with the goal of producing statistically consistent estimates of zircon age distributions at four scales – global, continental, regional, and intra-basin. Application of these sampling methods and detailed statistical analysis (time-series, spectral, correlation, and polynomial and exponential fitting) indicates possible relationships among continental and oceanic crust formation, large igneous province (LIP) events, the supercontinent cycle, geomagnetic polarity and geomagnetic intensity. Results show a strong correlation of zircon and LIP age spectra with major peaks at 2700, 2500–2400, 2200, 1900–1850, 1650–1600, 1100, 800, 600, and 250 Ma, with a pronounced cyclicity in both events of about 274 million years. Cross-correlation analysis indicates that LIP peaks precede zircon peaks by 10–40 million years. Furthermore, oceanic crust age peaks at 170–155, 135–125, 115–100, 80–70, 55–45 and 33–15 Ma correspond to zircon-LIP peaks. Also correlation analysis indicates a link between the zircon-LIP events and geomagnetic reversal frequency, as well as a possible link between geomagnetic polarity and paleointensity. Improved quantification of geological and geochemical measurements should help solve lingering questions about why time-series records of continental and oceanic crust, the supercontinent cycle, and global LIP events indicate evolution in quasi-periodic episodes.
Related items
Showing items related by title, author, creator and subject.
-
Li, X.; Li, Zheng-Xiang; He, B.; Li, W.; Li, Q.; Gao, Y.; Wang, Xuan-Ce (2012)Late Permian to Triassic (“Indosinian-aged”) orogenesis and associated magmatism are widespread in southeastern China, but their causes and significance to the regional geodynamic evolution are highly controversial. We ...
-
Condie, K.C.; Pisarevsky, S.A.; Puetz, S.J. (2021)Of nine large age peaks in zircon and LIP time series <2300 Ma (2150, 1850, 1450, 1400, 1050, 800, 600, 250 and 100 Ma), only four are geographically widespread (1850, 1400, 800 and 250 Ma). These peaks occur both before ...
-
Li, Zheng-Xiang; Evans, D.; Halverson, G. (2013)This review paper presents a set of revised global palaeogeographic maps for the 825–540 Ma interval using the latest palaeomagnetic data, along with lithological information for Neoproterozoic sedimentary basins. These ...