Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Effect of fracture fill on frequency- and angle-dependent velocities and attenuation in fractured porous rocks

    Access Status
    Fulltext not available
    Authors
    Kong, L.
    Gurevich, Boris
    Zhang, Y.
    Date
    2016
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Kong, L. and Gurevich, B. and Zhang, Y. 2016. Effect of fracture fill on frequency- and angle-dependent velocities and attenuation in fractured porous rocks, pp. 3508-3512.
    Source Title
    SEG Technical Program Expanded Abstracts
    DOI
    10.1190/segam2016-13831536.1
    ISSN
    1052-3812
    School
    Department of Exploration Geophysics
    URI
    http://hdl.handle.net/20.500.11937/53879
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 SEG.In fractured reservoirs, seismic wave velocity and amplitude depend on frequency and incidence angle. The frequency dependency is believed to be principally caused by the wave-induced flow of pore fluid at the mesoscopic scale. In recent years, two particular phenomena, partial saturation and soft fractures, have been identified as significant mechanisms of wave induced flow. However these phenomena are usually treated separately. Recently a unified model was proposed for a porous rock with a set of aligned fractures filled with arbitrary fluid. Existing models treat waves propagating perpendicular to the fractures. In this paper, we extend the model to all propagation angles by assuming that the flow direction is perpendicular to the layering plane and is independent of the loading direction. We first consider the limiting cases through poroelastic Backus averaging, and then we obtain the full stiffness tensor of the equivalent TI medium. The numerical results show that when the bulk modulus of the fracture-filling fluid is relatively large, the dispersion and attenuation of P-waves are mainly caused by soft fracturs. While the bulk modulus of fluid in fractures is much smaller than that of matrix pores, the attenuation due to the 'partial saturation' mechanism dominants.

    Related items

    Showing items related by title, author, creator and subject.

    • Elastic wave attenuation, dispersion and anisotropy in fractured porous media
      Galvin, Robert (2007)
      Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
    • Effects of fractures on seismic waves in poroelastic formations
      Brajanovski, Miroslav (2004)
      Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ...
    • Effect of fracture fill on seismic attenuation and dispersion in fractured porous rocks
      Kong, L.; Gurevich, Boris; Muller, Tobias; Wang, Y.; Yang, H. (2013)
      When a porous medium is permeated by open fractures, wave-induced flow between pores and fractures can cause significant attenuation and dispersion. Most studies of this phenomenon assume that pores and fractures are ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.