Effect of fracture fill on frequency- and angle-dependent velocities and attenuation in fractured porous rocks
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 SEG.In fractured reservoirs, seismic wave velocity and amplitude depend on frequency and incidence angle. The frequency dependency is believed to be principally caused by the wave-induced flow of pore fluid at the mesoscopic scale. In recent years, two particular phenomena, partial saturation and soft fractures, have been identified as significant mechanisms of wave induced flow. However these phenomena are usually treated separately. Recently a unified model was proposed for a porous rock with a set of aligned fractures filled with arbitrary fluid. Existing models treat waves propagating perpendicular to the fractures. In this paper, we extend the model to all propagation angles by assuming that the flow direction is perpendicular to the layering plane and is independent of the loading direction. We first consider the limiting cases through poroelastic Backus averaging, and then we obtain the full stiffness tensor of the equivalent TI medium. The numerical results show that when the bulk modulus of the fracture-filling fluid is relatively large, the dispersion and attenuation of P-waves are mainly caused by soft fracturs. While the bulk modulus of fluid in fractures is much smaller than that of matrix pores, the attenuation due to the 'partial saturation' mechanism dominants.
Related items
Showing items related by title, author, creator and subject.
-
Galvin, Robert (2007)Development of a hydrocarbon reservoir requires information about the type of fluid that saturates the pore space, and the permeability distribution that determines how the fluid can be extracted. The presence of fractures ...
-
Brajanovski, Miroslav (2004)Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ...
-
Kong, L.; Gurevich, Boris; Muller, Tobias; Wang, Y.; Yang, H. (2013)When a porous medium is permeated by open fractures, wave-induced flow between pores and fractures can cause significant attenuation and dispersion. Most studies of this phenomenon assume that pores and fractures are ...