Dynamic electrowetting and dewetting of ionic liquids at a hydrophobic solid-liquid interface
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The dynamic electrowetting and dewetting of ionic liquids are investigated with high-speed video microscopy. Five imidazolium-based ionic liquids ([BMIM]BF4, [BMIM]PF6, [BMIM]NTf2, [HMIM]NTf2, and [OMIM]BF4) are used as probe liquids. Droplets of ionic liquids are first spread on an insulated electrode by applying an external voltage (electrowetting) and then allowed to retract (dewetting) when the voltage is switched off. The base area of the droplet varies exponentially during both the electrowetting and retraction processes. The characteristic time increases with the viscosity of the ionic liquid. The electrowetting and retraction kinetics (dynamic contact angle vs contact line speed) can be described by the hydrodynamic or the molecular-kinetic model. Energy dissipation occurs by viscous and molecular routes with a larger proportion of energy dissipated at the three-phase contact line when the liquid meniscus retracts from the solid surface. The outcomes from this research have implications for the design and control of electro-optical imaging systems, microfluidics, and fuel cells.
Related items
Showing items related by title, author, creator and subject.
-
Paneru, M.; Priest, C.; Ralston, J.; Sedev, Rossen (2012)A droplet of ionic liquid is immersed in an immiscible liquid (n-hexadecane) and electrowetted on a flat electrode insulated with Teflon AF1600. Two series of ionic liquids were studied: 1-alkyl-3-methylimidazolium ...
-
Silvester, Debbie; Compton, R. (2009)Understanding the nature of dissolved species in ionic liquids is important, particularlywhen using them as reaction media to replace volatile organic solvents. Electrochemicaltechniques such as cyclic voltammetry and ...
-
Aubry, C.; Gutierrez, L.; Croue, Jean-Philippe (2013)Atomic force microscopy (AFM) was used to study interaction forces between four Natural Organic Matter (NOM) samples of different physicochemical characteristics and origins and mica surface at a wide range of ionic ...