Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Grenville Skarn Titanite: Potential Reference Material for Sims U–Th–Pb Analysis

    153174_29206_Kennedy_etal_2010_CanMin_titanite.pdf (1.015Mb)
    Access Status
    Open access
    Authors
    Kennedy, Allen
    Kamo, S.
    Nasdala, L.
    Timms, Nicholas Eric
    Date
    2010
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kennedy, Allen K. and Kamo, Sandra L. and Nasdala, Lutz and Timms, Nicolas E. 2010. Grenville Skarn Titanite: Potential Reference Material for Sims U–Th–Pb Analysis. The Canadian Mineralogist. 48 (6): pp. 1423-1443.
    Source Title
    The Canadian Mineralogist
    ISSN
    00084476
    School
    Department of Imaging and Applied Physics
    URI
    http://hdl.handle.net/20.500.11937/5403
    Collection
    • Curtin Research Publications
    Abstract

    We have investigated the homogeneity, chemical composition, structure, degree of radiation damage, and post-formation evolution of titanite crystals from skarns of the Grenville Province of the Canadian Shield using SHRIMP, TIMS, Raman and PL spectroscopy, EBSD, and EPMA–WDS. These results are used to assess the potential of the titanite as Reference Material (RM) for micro-analytical U–Th–Pb age dating. The SHRIMP data show that these megacrysts (5–31g) have concordant U–Pb isotope systematics, 60 to 500 ppm U, 120 to 1200 ppm Th , 206Pb/204Pb between 500 and 2500, ages of ~1 Ga, and excellent homogeneity at the scale of the analytical volume of the ion probe. The ID–TIMS titanite data for OLT1, OLT2 and TCB show that these crystals are essentially concordant. Data for OLT1 and OLT2 show slight scatter (i.e., in excess of that expected from the uncertainty in an individual analysis). For OLT1, one of seven analyses shows Pb loss or, possibly, a younger period of growth. Crystals OLT1 and OLT2 have respective TIMS concordia ages of 1014.8 ± 2.0 Ma (2s, n = 6, MSWD = 1.8) and 998.0 ± 4.5 Ma (2s, n = 3, MSWD = 3.3) for domains that have not lost Pb.The TIMS analyses of TCB are tightly clustered and give a concordia age of 1018.1 ± 1.7 Ma (2s, n = 4, MSWD = 0.92). Raman and PL spectra show a low to moderate degree of accumulated radiation-induced damage in the Grenville Skarn Titanite crystals and uniform internal distributions of this damage. The EDSB contrast images indicate little or no crystallographic misorientation. The EMPA–WDS data show that the outer 50–100 mm of the OLT1 and TCB crystals are enriched in Al and F, and depleted in Fe and Nb, when compared with the interior. In spite of the variation in composition and degree of radiation damage amongst samples, there are no identifiable matrix effects in our SHRIMP data. Some Grenville skarn titanite (GST) crystals have potential as RM for micro-analytical U–Th–Pb age dating. Crystal TCB has excellent homogeneity of U–Th–Pb isotopic composition. Crystals OLT1 and OLT2 have minor TIMS age heterogeneity. However, this heterogeneity is smaller than that of the Khan titanite, our current in-house titanite standard. Careful selection of analysis areas during SIMS, and of chips for TIMS analysis, allows high-quality isotopic data to be obtained from these large crystals of titanite.

    Related items

    Showing items related by title, author, creator and subject.

    • Deformation-enhanced recrystallization of titanite drives decoupling between U-Pb and trace elements
      Gordon, S.M.; Kirkland, Chris ; Reddy, Steven ; Blatchford, H.J.; Whitney, D.L.; Teyssier, C.; Evans, Noreen ; McDonald, B.J. (2021)
      Titanite is a common accessory mineral that is useful in determining both age (U-Pb isotopes) and pressure-temperature (P–T) conditions (trace-element composition: Zr, rare earth elements (REE)). However, titanite has a ...
    • Retention of radiation damage in zircon xenocrysts from kimberlites, Northern Yakutia
      Nasdala, L.; Kostrovitsky, S.; Kennedy, Allen; Zeug, M.; Esenkulova, S. (2014)
      We have studied zircon xenocrysts from Mesozoic kimberlites from the Kuoika and Ary–Mastakh fields in Northern Yakutia. Zircon xenocrysts are assumed to originate from crustal rocks. Our SHRIMP (Sensitive High mass ...
    • Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton: In situ U–Pb age and Sr-, Nd-, Hf- and O-isotope evidence
      Sun, J.; Yang, J.; Wu, F.; Li, X.; Yang, Y.; Xie, L.; Wilde, Simon (2010)
      In situ U–Pb age and Sr-, Nd-, Hf- and O- isotope analysis of accessory minerals (zircon, apatite and titanite) have been obtained for mafic microgranular enclaves and their host granites from the Early Cretaceous Fangshan ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.