A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Background: There are various methodological approaches to identifying clinically important subgroups and one method is to identify clusters of characteristics that differentiate people in cross-sectional and/or longitudinal data using Cluster Analysis (CA) or Latent Class Analysis (LCA). There is a scarcity of head-to-head comparisons that can inform the choice of which clustering method might be suitable for particular clinical datasets and research questions. Therefore, the aim of this study was to perform a head-to-head comparison of three commonly available methods (SPSS TwoStep CA, Latent Gold LCA and SNOB LCA). Methods. The performance of these three methods was compared: (i) quantitatively using the number of subgroups detected, the classification probability of individuals into subgroups, the reproducibility of results, and (ii) qualitatively using subjective judgments about each program's ease of use and interpretability of the presentation of results.We analysed five real datasets of varying complexity in a secondary analysis of data from other research projects. Three datasets contained only MRI findings (n = 2,060 to 20,810 vertebral disc levels), one dataset contained only pain intensity data collected for 52 weeks by text (SMS) messaging (n = 1,121 people), and the last dataset contained a range of clinical variables measured in low back pain patients (n = 543 people). Four artificial datasets (n = 1,000 each) containing subgroups of varying complexity were also analysed testing the ability of these clustering methods to detect subgroups and correctly classify individuals when subgroup membership was known. Results: The results from the real clinical datasets indicated that the number of subgroups detected varied, the certainty of classifying individuals into those subgroups varied, the findings had perfect reproducibility, some programs were easier to use and the interpretability of the presentation of their findings also varied. The results from the artificial datasets indicated that all three clustering methods showed a near-perfect ability to detect known subgroups and correctly classify individuals into those subgroups. Conclusions: Our subjective judgement was that Latent Gold offered the best balance of sensitivity to subgroups, ease of use and presentation of results with these datasets but we recognise that different clustering methods may suit other types of data and clinical research questions.
Related items
Showing items related by title, author, creator and subject.
-
Jensen, R.; Kent, Peter; Jensen, T.; Kjaer, P. (2018)Background: Research into the clinical importance of spinal MRI findings in patients with low back pain (LBP) has primarily focused on single imaging findings, such as Modic changes or disc degeneration, and found only ...
-
Agarwal, Shabnam (2011)BackgroundCervical radiculopathy (CR) results in significant disability and pain and is commonly treated conservatively with satisfactory clinical outcomes. However, a considerable number of patients require surgery to ...
-
Jensen, R.; Jensen, T.; Kjaer, P.; Kent, Peter (2013)Background: Magnetic Resonance Imaging (MRI) is the gold standard for detailed visualisation of spinal pathological and degenerative processes, but the prevailing view is that such imaging findings have little or no ...