Show simple item record

dc.contributor.authorLi, K.
dc.contributor.authorCousins, A.
dc.contributor.authorYu, H.
dc.contributor.authorFeron, P.
dc.contributor.authorTade, Moses
dc.contributor.authorLuo, W.
dc.contributor.authorChen, J.
dc.date.accessioned2017-07-27T05:21:42Z
dc.date.available2017-07-27T05:21:42Z
dc.date.created2017-07-26T11:11:20Z
dc.date.issued2016
dc.identifier.citationLi, K. and Cousins, A. and Yu, H. and Feron, P. and Tade, M. and Luo, W. and Chen, J. 2016. Systematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement. Energy Science And Engineering. 4 (1): pp. 23-39.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/54628
dc.identifier.doi10.1002/ese3.101
dc.description.abstract

In this paper, we present improvements to postcombustion capture (PCC) processes based on aqueous monoethanolamine (MEA). First, a rigorous, rate-based model of the carbon dioxide (CO2) capture process from flue gas by aqueous MEA was developed using Aspen Plus, and validated against results from the PCC pilot plant trials located at the coal-fired Tarong power station in Queensland, Australia. The model satisfactorily predicted the comprehensive experimental results from CO2 absorption and CO2 stripping process. The model was then employed to guide the systematic study of the MEA-based CO2 capture process for the reduction in regeneration energy penalty through parameter optimization and process modification. Important process parameters such as MEA concentration, lean CO2 loading, lean temperature, and stripper pressure were optimized. The process modifications were investigated, which included the absorber intercooling, rich-split, and stripper interheating processes. The minimum regeneration energy obtained from the combined parameter optimization and process modification was 3.1 MJ/kg CO2. This study suggests that the combination of a validated rate-based model and process simulation can be used as an effective tool to guide sophisticated process plant, equipment design and process improvement.

dc.publisherWILEY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleSystematic study of aqueous monoethanolamine-based CO2 capture process: model development and process improvement
dc.typeJournal Article
dcterms.source.volume4
dcterms.source.number1
dcterms.source.startPage23
dcterms.source.endPage39
dcterms.source.issn2050-0505
dcterms.source.titleEnergy Science And Engineering
curtin.accessStatusOpen access
curtin.facultyFaculty of Science and Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/