Multiple positive solutions of a singular fractional differential equation with negatively perturbed term
dc.contributor.author | Zhang, X. | |
dc.contributor.author | Liu, L. | |
dc.contributor.author | Wu, Yong Hong | |
dc.date.accessioned | 2017-01-30T10:46:26Z | |
dc.date.available | 2017-01-30T10:46:26Z | |
dc.date.created | 2015-03-03T20:17:29Z | |
dc.date.issued | 2012 | |
dc.identifier.citation | Zhang, X. and Liu, L. and Wu, Y.H. 2012. Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Mathematical and Computer Modelling. 55 (3-4): pp. 1263-1274. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/5465 | |
dc.identifier.doi | 10.1016/j.mcm.2011.10.006 | |
dc.description.abstract |
Let View the MathML sourceD0+α be the standard Riemann–Liouville derivative. We discuss the existence of multiple positive solutions for the following fractional differential equation with a negatively perturbed termView the MathML source{−D0+αu(t)=p(t)f(t,u(t))−q(t),0<t<1,u(0)=u′(0)=u(1)=0,[Turn MathJax on]where 2<α≤32<α≤3 is a real number, the perturbed term q:(0,1)→[0,+∞)q:(0,1)→[0,+∞) is Lebesgue integrable and may be singular at some zero measures set of [0,1], which implies the nonlinear term may change sign. | |
dc.publisher | Pergamon | |
dc.title | Multiple positive solutions of a singular fractional differential equation with negatively perturbed term | |
dc.type | Journal Article | |
dcterms.source.volume | 55 | |
dcterms.source.startPage | 1263 | |
dcterms.source.endPage | 1274 | |
dcterms.source.issn | 0895-7177 | |
dcterms.source.title | Mathematical and Computer Modelling | |
curtin.department | Department of Mathematics and Statistics | |
curtin.accessStatus | Open access via publisher |