Recovery of transport and geometrical properties of rock by statistical analysis of microtomographic images
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
We present numerical analysis of four microCT images of a Bentheimer outcrop sandstone sample acquired with different resolution. On the base of statistical analysis we show that the porosity and poretoskeleton distribution can be reliably obtained on samples of about 150 voxels with resolution coarser than 3 micrometers. In contrast, the statistically representative volume to determine complex properties such as permeability, tortuosity, or geometrical properties of the pore space may exceed 500 voxels and cannot be estimated reliably from conventional CT-scans. To overcome this difficulty we apply truncated Gaussian field technique for statistical simulation of images. We show that this technique allows to reproduce images with given porosity, pore-to-skeleton distribution, and permeability. However, geometrical properties of the simulated images do not match those of original CT-scans, and require higher-order statistics.
Related items
Showing items related by title, author, creator and subject.
-
Harrison, Christopher Bernard (2009)The use of seismic methods in hard rock environments in Western Australia for mineral exploration is a new and burgeoning technology. Traditionally, mineral exploration has relied upon potential field methods and surface ...
-
Bazaikin, Y.; Gurevich, B.; Iglauer, S.; Khachkova, T.; Kolyukhin, D.; Lebedev, Maxim; Lisitsa, V.; Reshetova, G. (2017)In order to study the effect of the micro-CT scan resolution and size on the accuracy of upscaled digital rock property estimation of core samples Bentheimer sandstone images with the resolution varying from 0.9 µm to 24 ...
-
Grochau, Marcos Hexsel (2009)Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...