Show simple item record

dc.contributor.authorYe, H.
dc.contributor.authorGui, W.
dc.contributor.authorXu, Honglei
dc.date.accessioned2017-07-27T05:22:02Z
dc.date.available2017-07-27T05:22:02Z
dc.date.created2017-07-26T11:11:19Z
dc.date.issued2017
dc.identifier.citationYe, H. and Gui, W. and Xu, H. 2017. Global convergence analysis of a class of epidemic models. Applied Mathematical Modelling. 47: pp. 442-458.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/54726
dc.identifier.doi10.1016/j.apm.2017.03.013
dc.description.abstract

This paper addresses the global convergence of the epidemic models whose infected subsystems are monotone in the sense of Hirsch (1984). By invoking results from monotone system theory and nonlinear control theory, a simple method is proposed for determining the global asymptotic stability of a disease free equilibrium (DFE) and the global convergence to an endemic equilibrium (EE). Typical epidemic models are studied to illustrate the applicability of the proposed methodology.

dc.publisherElsevier
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP160102819
dc.titleGlobal convergence analysis of a class of epidemic models
dc.typeJournal Article
dcterms.source.volume47
dcterms.source.startPage442
dcterms.source.endPage458
dcterms.source.issn0307-904X
dcterms.source.titleApplied Mathematical Modelling
curtin.departmentDepartment of Mathematics and Statistics
curtin.accessStatusOpen access via publisher


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record