Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Mechanism of SO2 Poisoning on the Electrochemical Activity of LSCF and LSM Electrodes

    Access Status
    Fulltext not available
    Authors
    Wang, C.
    Jiang, San Ping
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, C. and Jiang, S.P. 2015. Mechanism of SO2 Poisoning on the Electrochemical Activity of LSCF and LSM Electrodes. ECS Transactions. 68 (1): pp. 1023-1029.
    Source Title
    ECS Transactions
    DOI
    10.1149/06801.1023ecst
    ISBN
    9781607685395
    School
    Fuels and Energy Technology Institute
    URI
    http://hdl.handle.net/20.500.11937/5487
    Collection
    • Curtin Research Publications
    Abstract

    Sulfur in the air stream is one of the major contaminants affecting the performance stability of cathodes of solid oxide fuel cell (SOFCs) such as La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and La0.8Sr0.2MnO3 (LSM) perovskite oxide. In this paper, the effects of operating temperatures and SO2 concentrations on the electrochemical performance of LSCF and LSM cathodes are investigated. Sulfur poisoning effect is more pronounced at lower temperatures for LSM and LSCF cathodes, i.e., 700 oC. Sulfur deposition occurs inside the LSCF electrodes according to TOF-SIMS result and is most pronounced on the surface of LSCF at 700 oC, forming primarily SrSO4. For LSM, sulfur deposition is more obvious on the interface of LSM/YSZ at 800 oC by Nano-SIMS result. The reaction mechanism between sulfur dioxide and LSCF and LSM electrodes is then discussed.

    Related items

    Showing items related by title, author, creator and subject.

    • Effect of SO2 Poisoning on the Electrochemical Activity of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes of Solid Oxide Fuel Cells
      Wang, C.; He, S.; Chen, K.; Rowles, Matthew; Darvish, S.; Zhong, Y.; Jiang, San Ping (2017)
      The effect of sulfur deposition and poisoning on the electrochemical activity of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode of solid oxide fuel cells (SOFCs) for the O2 reduction reaction is studied under accelerated ...
    • Highly sulfur poisoning-tolerant BaCeO3-impregnated La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes for solid oxide fuel cells
      Wang, C.; Luo, D.; Jiang, San Ping; Lin, B. (2018)
      © 2018 IOP Publishing Ltd. Electrochemical performance and sulfur (SO2) tolerance were studied on pristine La0.6Sr0.4Co0.2Fe0.8O3-d(LSCF) and BaCeO3-impregnated LSCF (BaCeO3-LSCF) composite cathodes of solid oxide fuel ...
    • Sulfur Deposition and Poisoning of La0.6Sr0.4Co0.2Fe0.8O3-[delta] Cathode Materials of Solid Oxide Fuel Cells
      Wang, C.; Chen, Kongfa; Jiang, San Ping (2014)
      Sulfur in the air stream is one of the major contaminants affecting the performance stability of cathodes of solid oxide fuel cells (SOFCs) such as La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite. Here sulfur deposition and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.