Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A-Site Excess (La0.8Ca0.2)1.01FeO3−δ (LCF) Perovskite Hollow Fiber Membrane for Oxygen Permeation in CO2-Containing Atmosphere

    Access Status
    Fulltext not available
    Authors
    Yang, D.
    Yang, N.
    Meng, B.
    Tan, X.
    Zhang, C.
    Sunarso, J.
    Zhu, Z.
    Liu, Shaomin
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Yang, D. and Yang, N. and Meng, B. and Tan, X. and Zhang, C. and Sunarso, J. and Zhu, Z. et al. 2017. A-Site Excess (La0.8Ca0.2)1.01FeO3−δ (LCF) Perovskite Hollow Fiber Membrane for Oxygen Permeation in CO2-Containing Atmosphere. Energy and Fuels. 31 (4): pp. 4531-4538.
    Source Title
    Energy and Fuels
    DOI
    10.1021/acs.energyfuels.7b00121
    ISSN
    0887-0624
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/54937
    Collection
    • Curtin Research Publications
    Abstract

    CO 2 -resistant oxygen selective ceramic membranes show potential to be utilized in clean combustion and membrane-based reactions for greener chemical synthesis. In real applications, such membranes should have high mechanical strength as well as high oxygen flux and high stability in a CO 2 -containing atmosphere. In this work, a (La 0.8 Ca 0.2 ) 1.01 FeO 3-d (LCF) perovskite hollow fiber membrane was developed. Its oxygen permeation behavior was tested in different gas atmospheres, i.e., helium and carbon dioxide. Compared to the typical perovskite hollow fibers such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 (LSCF) and Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-d (BSCF), the LCF hollow fiber displayed the highest mechanical strength as well as the largest oxygen fluxes and stability in a CO 2 -containing atmosphere, highlighting its attractiveness in oxyfuel combustion and syngas production from methane.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimizing Oxygen Transport Through La0.6Sr0.4Co0.2Fe0.8O3-δ Hollow Fiber by Microstructure Modification and Ag/Pt Catalyst Deposition
      Han, D.; Sunarso, J.; Tan, X.; Yan, Z.; Liu, Lihong; Liu, Shaomin (2012)
      This work compares the oxygen permeation fluxes of five different La0.6Sr0.4Co0.2Fe0.8O3−δ membranes (e.g. disk, conventional hollow fiber, modified hollow fiber, Ag- or Pt-deposited hollow fiber membranes) to elucidate ...
    • H2/CH4/CO2-tolerant properties of SrCo0.8Fe0.1Ga0.1O3 − δ hollow fiber membrane reactors for methane partial oxidation to syngas
      Meng, X.; Bi, X.; Meng, B.; Yang, N.; Tan, X.; Liu, Lihong; Liu, Shaomin (2015)
      Oxygen permeable ceramic membranes have potential applications as the high temperature membrane reactors for cost-effective syngas production from methane partial oxidation. The prerequisite to realize this potential is ...
    • La0.7Sr0.3FeO3-α perovskite hollow fiber membranes for oxygen permeationand methane conversion
      Tan, X.; Shi, L.; Hao, G.; Meng, B.; Liu, Shaomin (2012)
      Gas-tight La0.7Sr0.3FeO3−α (LSF) perovskite hollow fiber membranes were fabricated by the phase inversion/sintering technique using self-made ceramic powder. The permeation and reaction properties of the LSF membrane were ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.