Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures

    Access Status
    Fulltext not available
    Authors
    Chen, G.
    Hao, Y.
    Chen, X.
    Hao, Hong
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Chen, G. and Hao, Y. and Chen, X. and Hao, H. 2017. Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures. International Journal of Impact Engineering. 106: pp. 110-119.
    Source Title
    International Journal of Impact Engineering
    DOI
    10.1016/j.ijimpeng.2017.03.017
    ISSN
    0734-743X
    School
    Department of Civil Engineering
    URI
    http://hdl.handle.net/20.500.11937/55015
    Collection
    • Curtin Research Publications
    Abstract

    Because of the excellent mechanical, physical and chemical properties, bulk metallic glass (BMG) materials have shown profound potential in a wide range of engineering applications. To prevent catastrophic failure of monolithic BMG at very small strains, metal fibres or ceramic particles are normally used to reinforce the material and improve the ductility. Mechanical properties of Zr-based BMG reinforced with 80% Tungsten fibres by volume were experimentally investigated in the present study at room temperature and elevated temperature up to 873 K. The quasi-static and dynamic compressive deformation and fracture behaviour were investigated by means of INSTRON, MTS testing machines and split Hopkinson pressure bar (SHPB), respectively. The failure patterns and mechanical properties of cylindrical specimens with different aspect (length to diameter) ratios under quasi-static compression were studied. It was found that the failure of BMG composite material was resulted from the combination of BMG shear failure, fibres’ axial splitting and fibre-matrix debonding. Results of quasi-static tests at different temperatures revealed that the yield strength decreased with temperature, and the strain hardening behaviour was replaced with strain softening after the yield stress when the temperature was elevated. Results from SHPB tests at room temperature showed approximately 30% higher strengths compared to the quasi-static counterpart, but the specimens were found partially losing the deformability and fail at smaller strains. The dynamic strengths were also found to decrease with the increase of temperature. An empirical relation to describe the change of yield strength due to temperature elevation was proposed based on the test data. The mechanism of self-sharpening behaviour of penetrator made of BMG composites was explained based on the material behaviour at high strain rate and high temperature.

    Related items

    Showing items related by title, author, creator and subject.

    • Flexural behaviour of hybrid fibre-reinforced polymer (FRP) matrix composites
      Sudarisman (2009)
      The flexural behaviour of three different hybrid fibre-reinforced polymer (FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been ...
    • Strain rate effect on interfacial bond behaviour between BFRP sheets and steel fibre reinforced concrete
      Yuan, C.; Chen, Wensu ; Pham, Thong ; Hao, Hong ; Jian, C.; Shi, Y. (2019)
      Numerous studies have shown that using steel fibre reinforced concrete (SFRC) and retrofitting with Fibre-reinforced polymer (FRP) composites can improve the strength and ductility of RC structures against impact and ...
    • Experimental evaluation of quasi-static and dynamic compressive properties of ambient-cured high-strength plain and fiber reinforced geopolymer composites
      Khan, M.; Hao, Y.; Hao, Hong; Shaikh, Faiz (2018)
      Heat cured geopolymer binders have been studied extensively to establish their mechanical behaviour under quasi-static loading conditions and it has been found that they are capable of achieving comparable and in some ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.