Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    On the hysteresis of argon adsorption in a uniform closed end slit pore

    Access Status
    Fulltext not available
    Authors
    Fan, Chunyan
    Do, D.
    Nicholson, D.
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Fan, C. and Do, D. and Nicholson, D. 2013. On the hysteresis of argon adsorption in a uniform closed end slit pore. Journal of Colloid and Interface Science. 405: pp. 201-210.
    Source Title
    Journal of Colloid and Interface Science
    DOI
    10.1016/j.jcis.2013.04.052
    ISSN
    0021-9797
    School
    Department of Chemical Engineering
    URI
    http://hdl.handle.net/20.500.11937/55130
    Collection
    • Curtin Research Publications
    Abstract

    We present a molecular simulation study of adsorption and desorption in slit mesopores of uniform width with one end closed and explore the effects of pore dimensions (width and length), temperature and surface affinity on the hysteresis loop: its position, lower and upper closure points, area and shape. Our results show that the metastability, brought about by structural change in the adsorbate, is the reason for the existence of hysteresis, and contrast with reports suggesting that reversibility invariably prevails for adsorption in closed end pores. The shape, area and position of the hysteresis loop are complex functions of pore width, length and temperature. We establish a parametric map of the boundary separating reversible and hysteretic regions. Our simulation results also show a number of interesting observations that have not been previously reported or generally recognised: (1) the fluid within the core of the pore behaves like a bulk liquid as the pore is progressively filled, via the movement of the meniscus from the closed end to the pore mouth, but as the pore fills, the fluid in the core becomes structured, (2) the shape of the meniscus changes as adsorption progresses but is constant during desorption because of the constant thickness of the adsorbed layer in the two-phase region, (3) the hysteresis loop is larger for a longer pore, (4) the area of the hysteresis loop increases with pore width up to a certain width, beyond which it decreases and finally disappears, (5) as temperature approaches the critical hysteresis temperature, the hysteresis loop area decreases, but it retains its Type H1 character. © 2013 Elsevier Inc.

    Related items

    Showing items related by title, author, creator and subject.

    • On the existence of a hysteresis loop in open and closed end pores
      Fan, Chunyan; Do, D.; Nicholson, D. (2014)
      We have studied the adsorption of argon at 87 K in slit pores of finite length with a smooth graphitic potential, open at both ends or closed at one end. Simulations were carried out using conventional GCMC (grand canonical ...
    • On the hysteresis of adsorption and desorption of simple gases in open end and closed end pores
      Zeng, Y.; Prasetyo, L.; Tan, S.; Fan, Chunyan; Do, D.; Nicholson, D. (2017)
      This paper presents a comprehensive computer simulation study of the microscopic mechanisms of adsorption and desorption in uniform sized pores. Our specific aim is to elucidate the origin of hysteresis, especially in ...
    • Condensation and Evaporation in Slit-Shaped Pores: Effects of Adsorbate Layer Structure and Temperature
      Zeng, Y.; Fan, Chunyan; Do, D.; Nicholson, D. (2014)
      We have carried out an extensive computer simulation study of the effects of temperature on adsorption and desorption of argon in two slit mesopores; one of which has both ends open to the surroundings, and the other with ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.