Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    How is sound conducted to the cochlea in toothed whales?

    Access Status
    Open access via publisher
    Authors
    Zosuls, A.
    Mountain, D.
    Ketten, Darlene
    Date
    2015
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    Zosuls, A. and Mountain, D. and Ketten, D. 2015. How is sound conducted to the cochlea in toothed whales?.
    Source Title
    AIP Conference Proceedings
    DOI
    10.1063/1.4939361
    ISBN
    9780735413504
    School
    School of Science
    URI
    http://hdl.handle.net/20.500.11937/55157
    Collection
    • Curtin Research Publications
    Abstract

    © 2015 AIP Publishing LLC. Toothed whales (Odontocetes) typically have small occluded ear canals and sea water has a characteristic impedance that is much more similar to the impedance of soft tissues of the head than is the case for the air-tissue interface in terrestrial mammals. This makes it plausible that significant acoustic energy is being transmitted to their middle ear by tissue conduction. In addition, some authors have proposed that sound reaches the cochlea via bone conduction rather than via the tympanic membrane. To address these issues, we have developed a method to measure stapes velocity in response to vibrational stimulation at arbitrary locations on heads and ears harvested from stranded animals. Stapes velocity was measured with a Laser Doppler Velocimeter at the footplate with the cochlea drained. In all species tested, the transfer function of stapes velocity referenced to actuator velocity showed a high-pass characteristic. The corner frequency varied with species and experiment between 4 kHz and 60 kHz. This is similar to what is seen in odontocete audiograms but the cutoff slope is typically steeper than in the audiograms. There was no indication of high frequency cutoff within our measurement range. Disrupting the ossicles and fat bodies affected the transfer functions.

    Related items

    Showing items related by title, author, creator and subject.

    • Inversion for the Elastic Parameters of Layered Transversely Isotropic Media
      Li, Ruiping (2002)
      In most cases of seismic processing and interpretation, elastic isotropy is assumed. However, velocity anisotropy is found to exist in most subsurface media. Hence, there exists a fundamental inconsistency between theory ...
    • Multiphase Transient Flow in Pipes
      Ben Mahmud, Hisham (2012)
      The development of oil and gas fields in offshore deep waters (more than 1000 m) will become more common in the future. Inevitably, production systems will operate under multiphase flow conditions. The two–phase flow of ...
    • Simultaneous time imaging, velocity estimation, and multiple suppression using local event slopes
      Cooke, D.; Bona, Andrej; Hansen, B. (2009)
      Starting with the double-square-root equation we derive expressions for a velocity-independent prestack time migration and for the associated migration velocity. We then use that velocity to identify multiples and suppress ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.