Measurement-to-track association for nontraditional measurements
Access Status
Authors
Date
2011Collection
Type
Metadata
Show full item recordAbstract
Data fusion algorithms must typically address not only kinematic issues - that is, target tracking - but also nonkinematics - for example, target identification, threat estimation, intent assessment, etc. Whereas kinematics involves traditional measurements such as radar detections, nonkinematics typically involves non-traditional measurements such as quantized data, attributes, features, natural-language statements, and inference rules. The kinematic vs. nonkinematic chasm is often bridged by grafting some expert-system approach (fuzzy logic, Dempster-Shafer, rule-based inference) into a single- or multi-hypothesis multitarget tracking algorithm, using ad hoc methods. The purpose of this paper is to show that conventional measurement-to-track association theory can be directly extended to nontraditional measurements in a Bayesian manner. Concepts such as association likelihood, association distance, hypothesis probability, and global nearest-neighbor distance are defined, and explicit formulas are derived for specific kinds of nontraditional evidence. © 2011 IEEE.
Citation
Source Title
Department
Related items
Showing items related by title, author, creator and subject.
-
Mahler, Ronald; El-Fallah, A. (2012)In several previous publications the first author has proposed a "generalized likelihood function" (GLF) approach for processing nontraditional measurements such as attributes, features, natural-language statements, and ...
-
Ristic, B.; Vo, Ba-Ngu; Clark, D.; Vo, Ba Tuong (2011)Performance evaluation of multi-target tracking algorithms is of great practical importance in the design, parameter optimization and comparison of tracking systems. The goal of performance evaluation is to measure the ...
-
Kim, Du Yong; Jeon, M. (2014)Data fusion is an important issue for object tracking in autonomous systems such as robotics and surveillance. In this paper, we present a multiple-object tracking system whose design is based on multiple Kalman filters ...