Show simple item record

dc.contributor.authorHoseinnezhad, R.
dc.contributor.authorVo, Ba-Ngu
dc.contributor.authorVo, Ba Tuong
dc.contributor.authorSuter, D.
dc.date.accessioned2017-08-24T02:18:52Z
dc.date.available2017-08-24T02:18:52Z
dc.date.created2017-08-23T07:21:44Z
dc.date.issued2011
dc.identifier.citationHoseinnezhad, R. and Vo, B. and Vo, B.T. and Suter, D. 2011. Bayesian integration of audio and visual information for multi-target tracking using a CB-member filter, pp. 2300-2303.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/55473
dc.identifier.doi10.1109/ICASSP.2011.5946942
dc.description.abstract

A new method is presented for integration of audio and visual information in multiple target tracking applications. The proposed approach uses a Bayesian filtering formulation and exploits multi-Bernoulli random finite set approximations. The work presented in this paper is the first principled Bayesian estimation approach to solve the sensor fusion problems that involve intermittent sensory data (e.g. audio data for a person who occasionally speaks.) We have examined our method with case studies from the SPEVI database. The results show nearly perfect tracking of people not only when they are silent but also when they are not visible to the camera (but speaking). © 2011 IEEE.

dc.titleBayesian integration of audio and visual information for multi-target tracking using a CB-member filter
dc.typeConference Paper
dcterms.source.startPage2300
dcterms.source.endPage2303
dcterms.source.titleICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dcterms.source.seriesICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dcterms.source.isbn9781457705397
curtin.departmentSchool of Electrical Engineering and Computing
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record