Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Transformation of a star into a planet in a millisecond pulsar binary

    Access Status
    Fulltext not available
    Authors
    Bailes, M.
    Bates, S.
    Bhalerao, V.
    Bhat, Ramesh
    Burgay, M.
    Burke-Spolaor, S.
    D'Amico, N.
    Johnston, S.
    Keith, M.
    Kramer, M.
    Kulkarni, S.
    Levin, L.
    Lyne, A.
    Milia, S.
    Possenti, A.
    Spitler, L.
    Stappers, B.
    Van Straten, W.
    Date
    2011
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bailes, M. and Bates, S. and Bhalerao, V. and Bhat, R. and Burgay, M. and Burke-Spolaor, S. and D'Amico, N. et al. 2011. Transformation of a star into a planet in a millisecond pulsar binary. Science. 333 (6050): pp. 1717-1720.
    Source Title
    Science
    DOI
    10.1126/science.1208890
    ISSN
    0036-8075
    School
    Curtin Institute of Radio Astronomy (Physics)
    URI
    http://hdl.handle.net/20.500.11937/55606
    Collection
    • Curtin Research Publications
    Abstract

    Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction.

    Related items

    Showing items related by title, author, creator and subject.

    • MeerTime - the MeerKAT Key science program on pulsar timing
      Bailes, M.; Barr, E.; Bhat, Ramesh; Brink, J.; Buchner, S.; Burgay, M.; Camilo, F.; Champion, D.; Hessels, J.; Jansseng, G.; Jameson, A.; Johnston, S.; Karastergiou, A.; Karuppusamy, R.; Kaspi, V.; Keith, M.; Kramer, M.; McLaughlin, M.; Moodley, K.; Oslowski, S.; Possenti, A.; Ransom, S.; Rasio, F.; Sievers, J.; Serylak, M.; Stappers, B.; Stairs, I.; Theureau, G.; van Straten, W.; Weltevrede, P.; Wex, N. (2016)
      © Copyright owned by the author(s). The MeerKAT telescope represents an outstanding opportunity for radio pulsar timing science with its unique combination of a large collecting area and aperture efficiency (effective ...
    • MeerTime - the MeerKAT Key science program on pulsar timing
      Bailes, M.; Barr, E.; Bhat, Ramesh; Brink, J.; Buchner, S.; Burgay, M.; Camilo, F.; Champion, D.; Hessels, J.; Jansseng, G.; Jameson, A.; Johnston, S.; Karastergiou, A.; Karuppusamy, R.; Kaspi, V.; Keith, M.; Kramer, M.; McLaughlin, M.; Moodley, K.; Oslowski, S.; Possenti, A.; Ransom, S.; Rasio, F.; Sievers, J.; Serylak, M.; Stappers, B.; Stairs, I.; Theureau, G.; van Straten, W.; Weltevrede, P.; Wex, N. (2016)
      © Copyright owned by the author(s). The MeerKAT telescope represents an outstanding opportunity for radio pulsar timing science with its unique combination of a large collecting area and aperture efficiency (effective ...
    • A Multiwavelength View of the Neutron Star Binary 1FGL J1417.7-4402: A Progenitor to Canonical Millisecond Pulsars
      Swihart, S.; Strader, J.; Shishkovsky, L.; Chomiuk, L.; Bahramian, A.; Heinke, C.; Miller-Jones, James; Edwards, P.; Cheung, C. (2018)
      The Fermi γ-ray source 1FGL J1417.7–4407 (J1417) is a compact X-ray binary with a neutron star primary and a red giant companion in a ~5.4 days orbit. This initial conclusion, based on optical and X-ray data, was confirmed ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.