Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017 Cyclic voltammetry (CV) in chloride-based aqueous electrolytes of ferrocene molecule doped thin membranes (~200 nm in thickness) on glassy carbon (GC) substrate electrodes, both plasticized poly(vinyl chloride) (PVC) and unplasticized poly(methyl methacrylate)/poly(decyl methacrylate) (PMMA-PDMA) membranes, has shown that the electrochemical oxidation behavior is irreversible due most likely to degradation of ferrocene at the buried interface (GC|membrane). Furthermore, CV of the ferrocene molecules at GC electrodes in organic solvents employing chloride-based and chloride-free organic electrolytes has demonstrated that the chloride anion is inextricably linked to this irreversible ferrocene oxidation electrochemistry. Accordingly, we have explored the electrochemical oxidation mechanism of ferrocene-based redox molecules in thin film plasticized and unplasticized polymeric membrane electrodes by coupling synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) and near edge X-ray absorption fine structure (NEXAFS) with argon ion sputtering to depth profile the electrochemically oxidized thin membrane systems. With the PVC depth profiling studies, it was not possible to precisely study the influence of chloride on the ferrocene reactivity due to the high atomic ratio of chloride in the PVC membrane; however, the depth profiling results obtained with a chlorine-free polymer (PMMA-PDMA) provided irrefutable evidence for the formation of a chloride-based iron product at the GC|PMMA-PDMA interface. Finally, we have identified conditions that prevent the irreversible conversion of ferrocene by utilizing a high loading of redox active reagent and/or an ionic liquid (IL) membrane plasticizer with high ionicity that suppresses the mass transfer of chloride.
Related items
Showing items related by title, author, creator and subject.
-
Sohail, M.; De Marco, Roland; Jarolímová, Z.; Pawlak, M.; Bakker, E.; He, N.; Latonen, R.; Lindfors, T.; Bobacka, J. (2015)© 2015 American Chemical Society. The transportation and accumulation of redox active species at the buried interface between glassy carbon electrodes and plasticized polymeric membranes have been studied using synchrotron ...
-
Pawlak, Marcin; Grygolowicz-Pawlak, Ewa; Bakker, Eric (2010)We report here on the synthesis of poly(vinyl chloride) (PVC) covalently modified with ferrocene groups (FcPVC) and the electrochemical behavior of the resulting polymeric membranes in view of designing all solid state ...
-
Li, Tiexin; Dief, Essam; Lyu, Xin ; Rahpeima, Soraya; Ciampi, Simone ; Darwish, Nadim (2021)Functionalizing Si with self-assembled monolayers (SAMs) paves the way for integrating the semiconducting properties of Si with the diverse properties of organic molecules. Highly packed SAMs such as those formed from ...