On multitarget pairwise-Markov models, II
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
© 2017 SPIE. This paper is the seventh in a series aimed at weakening the independence assumptions that are typically presumed in multitarget tracking. Two years ago at this conference, we initiated an exploratory analysis of general multitarget pairwise-Markov (MPMC) systems, which weaken the multitarget Markov assumption. Based on this analysis, we derived an exploratory CPHD filter for MPMC systems. Unfortunately, this approach relied on heuristic models in order to incorporate both spatial and cardinality correlation between states and measurements. This paper describes a fully rigorous approach, provided that only cardinality correlation is taken into account. We derive the time-update and measurement-update equations for a CPHD filter describing the evolution of such an MPMC system.
Related items
Showing items related by title, author, creator and subject.
-
Mahler, Ronald (2013)This tutorial paper summarizes the motivations, concepts and techniques of finite-set statistics (FISST), a system-level, 'top-down,' direct generalization of ordinary single-sensor, single-target engineering statistics ...
-
Vo, Ba Tuong; Vo, Ba-Ngu (2018)© 2018 ISIF This paper extends the generalized labeled multi-Bernoulli (GLMB) tracking filter to a batch multi-target tracker. In a labeled random finite set formulation, a multi-target tracking filter propagates the ...
-
Mallick, M.; Vo, Ba-Ngu; Kirubarajan, T.; Arulampalam, S. (2013)Multitarget tracking has a long history spanning over 50 years and it refers to the problem of jointly estimating the number of targets and their states from sensor data. Today, multitarget tracking has found applications ...