HMFcalc: An online tool for calculating dark matter halo mass functions
Access Status
Authors
Date
2013Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The dark matter halo mass function (HMF) is a characteristic property of cosmological structure formation models, quantifying the number density of dark matter haloes per unit mass in the Universe. A key goal of current and planned large galaxy surveys is to measure the HMF and to use it to test theories of dark matter and dark energy. We present a new web application for calculating the HMF-the frontend HMFcalc and the engine hmf. HMFcalc has been designed to be flexible, efficient and easy to use, providing observational and theoretical astronomers alike with the means to explore standard functional forms of the HMF or to tailor their own. We outline the theoretical background needed to compute the HMF, we show how it has been implemented in hmf, and finally we provide worked examples that illustrate HMFcalc's versatility as an analysis tool. © 2013 Elsevier B.V.
Related items
Showing items related by title, author, creator and subject.
-
Porayko, N.; Zhu, X.; Levin, Y.; Hui, L.; Hobbs, G.; Grudskaya, A.; Postnov, K.; Bailes, M.; Bhat, Ramesh; Coles, W.; Dai, S.; Dempsey, J.; Keith, M.; Kerr, M.; Kramer, M.; Lasky, P.; Manchester, R.; Oslowski, S.; Parthasarathy, A.; Ravi, V.; Reardon, D.; Rosado, P.; Russell, C.; Shannon, Ryan; Spiewak, R.; Van Straten, W.; Toomey, L.; Wang, J.; Wen, L.; You, X. (2018)t is widely accepted that dark matter contributes about a quarter of the critical mass-energy density in our Universe. The nature of dark matter is currently unknown, with the mass of possible constituents spanning nearly ...
-
Murray, Steven; Power, C.; Robotham, A. (2013)The parameters governing the standard d cold dark matter cosmological model have been constrained with unprecedented accuracy by precise measurements of the cosmic microwave background by the Wilkinson Microwave Anisotropy ...
-
Sammons, Mawson ; Macquart, Jean-Pierre ; Ekers, Ron ; Shannon, Ryan ; Cho, H.; Prochaska, J.X.; Deller, A.T.; Day, C.K. (2020)Despite existing constraints, it remains possible that up to 35% of all dark matter is comprised of compact objects, such as the black holes in the 10-100 M o˙ range whose existence has been confirmed by LIGO. The strong ...