Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper presents the development of lightweight volcanic pumice concrete (VPC) using pumice based ASTM Type I blended cement (PVPC) and aggregates (both coarse and fine). The performance of VPC mixtures was evaluated by conducting comprehensive series of tests on fresh and hardened properties as well as durability. Fresh and mechanical properties of VPC mixtures such as slump, air content, compressive strength, tensile strength, density, and modulus of elasticity are described. The durability characteristics were investigated by drying shrinkage, water permeability, mercury intrusion porosimetry, differential scanning calorimetry and microhardness tests. The variables in the study include: % replacement (0%, 50%, 75% and 100% by volume) of normal weight coarse gravel aggregate by coarse lightweight volcanic pumice aggregate (VPA), replacement (100% by volume) of fine aggregate (sand) by fine VPA, constant (0.45)/variable (0.37-0.64) water-to-binder ratio by mass, variable (1.3-3.7) aggregate-to-binder ratio by mass and cement types (ASTM type I cement and PVPC). The investigation suggests the production of lightweight VPCs for structural applications having satisfactory strength and durability characteristics. The use of PVPC induces the beneficial effect of reducing the drying shrinkage and water permeability of VPC mixtures. The presence of coarse/fine/both VPA is also associated with lower permeability due to the development of high quality interfacial paste-aggregate transition zone and the progressive internal curing in VPCs. Development of non-expensive and environmentally friendly VPC with acceptable strength and durability characteristics (as illustrated in this study) can be extremely helpful for the sustainable construction and rehabilitation of volcanic disaster areas around the world. © 2010 Elsevier Ltd. All rights reserved.
Related items
Showing items related by title, author, creator and subject.
-
Arel, H.; Shaikh, Faiz (2018)This paper presents the effects of silica fume (SF) fineness and fiber aspect ratios of steel fiber on fresh and harden characteristics of high-strength lightweight concrete containing oil palm shell as coarse aggregates. ...
-
Soltaninaveh, Kaveh (2008)Concrete is the most common building material in the world and its use has been increasing during the last century as the need for construction projects has escalated. Traditionally, concrete uses Ordinary Portland Cement ...
-
Shaikh, Faiz; Kerai, S.; Kerai, S. (2016)This paper presents the effect of different micro-silica (MS) contents of 5, 10 and 15 wt.% as partial replacement of cement on mechanical and durability properties of high volume fly ash - recycled aggregate concretes ...