Tool wear and surface quality of metal matrix composites due to machining: A review
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Copyright © 2017 the Authors. Reprinted by permission of SAGE Publications
Collection
Abstract
Higher tool wear and inferior surface quality of the specimens during machining restrict metal matrix composites' application in many areas in spite of their excellent properties. The researches in this field are not well organized, and knowledge is not properly linked to give a complete overview. Thus, it is hard to implement it in practical fields. To address this issue, this article reviews tool wear and surface generation and latest developments in machining of met al matrix composites. This will provide an insight and scientific overview in this field which will facilitate the implementation of the obtained knowledge in the practical fields. It was noted that the hard reinforcements initially start abrasive wear on the cutting tool. The abrasion exposes new cutting tool surface, which initiates adhesion of matrix material to the cutting tool and thus causes adhesion wear. Built-up edges also generate at lower cutting speeds. Although different types of coating improve tool life, only diamond cutting tools show considerably longer tool life. The application of the coolants improves tool life reasonably at higher cutting speed. Pits, voids, microcracks and fractured reinforcements are common in the machined metal matrix composite surface. These are due to ploughing, indentation and dislodgement of particles from the matrix due to tool-particle interactions. Furthermore, compressive residual stress is caused by the particles' indentation in the machined surface. At high feeds, the feed rate controls the surface roughness of the metal matrix composite; although at low feeds, it was controlled by the particle fracture or pull out. The coarser reinforced particles and lower volume fraction enhance microhardness variations beneath the machined surface.
Related items
Showing items related by title, author, creator and subject.
-
Pramanik, Alokesh; Zhang, Liangchi; Arsecularatne, Joseph (2007)An analytical or experimental method is often unable to explore the behavior of a metal matrix composite (MMC) during machining due to the complex deformation and interactions among particles, tool and matrix. This paper ...
-
Pramanik, Alokesh; Zhang, L.; Arsecularatne, J. (2008)The presence of hard reinforce particles in two phases materials, such as metal matrix composites (MMCs), introduces additional effects, such as tool–particle interactions, localised plastic deformation of matrix material, ...
-
Pramanik, Alokesh; Rahman, M. (2012)Study on ultra-precision machining, where diamond cutting tools are used to achieve submicron tolerance and a nano-meter surface finish, has increased since the 1960s. Surfaces of the popular metals (copper and aluminium) ...