Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Novel synthesis of porous Mg scaffold as a reactive containment vessel for LiBH4

    Access Status
    Open access via publisher
    Authors
    Sofianos, M.
    Sheppard, Drew
    Rowles, Matthew
    Humphries, Terry
    Liu, Shaomin
    Buckley, C.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sofianos, M. and Sheppard, D. and Rowles, M. and Humphries, T. and Liu, S. and Buckley, C. 2017. Novel synthesis of porous Mg scaffold as a reactive containment vessel for LiBH4. RSC Advances. 7 (58): pp. 36340-36350.
    Source Title
    RSC Advances
    DOI
    10.1039/c7ra05275h
    ISSN
    2046-2069
    School
    Department of Physics and Astronomy
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150101708
    URI
    http://hdl.handle.net/20.500.11937/56247
    Collection
    • Curtin Research Publications
    Abstract

    A novel porous Mg scaffold was synthesised and melt-infiltrated with LiBH 4 to simultaneously act as both a confining framework and a destabilising agent for H 2 release from LiBH 4 . This porous Mg scaffold was synthesised by sintering a pellet of NaMgH 3 at 450 °C under dynamic vacuum. During the sintering process the multi-metal hydride, decomposed to Mg metal and molten Na. The vacuum applied in combination with the applied sintering temperature, created the ideal conditions for the Na to vaporise and to gradually exit the pellet. The pores of the scaffold were created by the removal of the H 2 and Na from the body of the NaMgH 3 pellet. The specific surface area of the porous Mg scaffold was determined by the Brunauer-Emmett-Teller (BET) method and from Small-Angle X-ray Scattering (SAXS) measurements, which was 26(1) and 39(5) m 2 g -1 respectively. The pore size distribution was analysed using the Barrett-Joyner-Halenda (BJH) method which revealed that the majority of the pores were macropores, with only a small amount of mesopores present in the scaffol d. The melt-infiltrated LiBH 4 was highly dispersed in the porous scaffold according to the morphological observation carried out by a Scanning Electron Microscope (SEM) and also catalysed the formation of MgH 2 as seen from the X-ray diffraction (XRD) patterns of the samples after the infiltration process. Temperature Programmed Desorption (TPD) experiments, which were conducted under various H 2 backpressures, revealed that the melt-infiltrated LiBH 4 samples exhibited a H 2 desorption onset temperature (T des ) at 100 °C which is 250 °C lower than the bulk LiBH 4 and 330 °C lower than the bulk 2LiBH 4 /MgH 2 composite. Moreover, the LiH formed during the decomposition of the LiBH 4 was itself observed to fully decompose at 550 °C. The as-synthesised porous Mg scaffold acted as a reactive containment vessel for LiBH 4 which not only confined the complex metal hydride but also destabilised it by significantly reducing the H 2 desorption temperature down to 100 °C.

    Related items

    Showing items related by title, author, creator and subject.

    • Novel synthesis of porous aluminium and its application in hydrogen storage
      Sofianos, Veronica; Sheppard, Drew; Ianni, E.; Humphries, Terry; Rowles, Matthew; Liu, S.; Buckley, C. (2017)
      A novel approach for confining LiBH4 within a porous aluminium scaffold was applied in order to enhance its hydrogen storage properties, relative to conventional techniques for confining complex hydrides. The porous ...
    • Electrochemical Synthesis of Highly Ordered Porous Al Scaffolds Melt-Infiltrated with LiBH4 for Hydrogen Storage
      Sofianos, Veronica; Sheppard, Drew; Silvester, Debbie; Lee, Junqiao; Paskevicius, Mark; Humphries, Terry; Buckley, Craig (2018)
      Two highly ordered porous Al scaffolds were synthesized by applying a soft template assisted electrodeposition method, using an ionic liquid as the electrolyte. Polystyrene (PS) spheres with an average diameter of 399 ± ...
    • Hydrogen storage properties of eutectic metal borohydrides melt-infiltrated into porous Al scaffolds
      Sofianos, M. Veronica ; Chaudhary, A.; Paskevicius, Mark ; Sheppard, Drew; Humphries, Terry ; Dornheim, M.; Buckley, Craig (2019)
      Porous Al scaffolds were synthesised and melt-infiltrated with various eutectic metal borohydride mixtures (0.725LiBH4-0.275KBH4, 0.68NaBH4-0.32KBH4, 0.4NaBH4-0.6 Mg(BH4)2) to simultaneously act as both a confining framework ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.